Working on a rewrite based on JSON unmarshaling

This commit is contained in:
Brian Buller 2023-06-22 10:57:30 -05:00
parent 638cf4ded7
commit fe8f4d644a
3 changed files with 372 additions and 39 deletions

View File

@ -4,9 +4,50 @@ import (
"errors"
"fmt"
"reflect"
"sort"
"sync"
"unicode"
"unicode/utf8"
)
type any interface{}
type any = interface{}
func (b *DB) Save(path []string, src any) error {
t := reflect.TypeOf(src)
if t.Kind() == reflect.Pointer {
// Save the actual struct
elem := reflect.ValueOf(src).Elem()
return b.Save(path, elem.Interface())
}
if t.Kind() == reflect.Struct {
fields := reflect.VisibleFields(t)
r := reflect.ValueOf(src)
for _, fld := range fields {
f := r.FieldByName(fld.Name)
if (f.Kind() == reflect.Struct || f.Kind() == reflect.Pointer) && f != src {
if f.CanInterface() {
err := b.Save(append(path, FieldName(fld)), f.Interface())
if err != nil {
return err
}
} else {
err := b.Save(append(path, FieldName(fld)), reflect.Indirect(f))
if err != nil {
return err
}
}
} else {
if err := b.Set(path, FieldName(fld), f); err != nil {
return err
}
}
}
} else {
return b.Set(path[:len(path)-1], path[len(path)-1], src)
}
return nil
}
func (b *DB) Load(path []string, dest any) error {
destValue := reflect.ValueOf(dest)
@ -17,12 +58,20 @@ func (b *DB) Load(path []string, dest any) error {
d := reflect.Indirect(destValue)
fmt.Println(">> d.Kind() ->", d.Kind())
if d.Kind() != reflect.Struct {
fmt.Println(">> Kind != Struct; GetForInterface")
path, name := path[:len(path)-1], path[len(path)-1]
return b.GetForInterface(path, name, dest)
if b.CanGetForInterface(d) {
fmt.Println(">> Kind != Struct; GetForInterface")
path, name := path[:len(path)-1], path[len(path)-1]
return b.GetForInterface(path, name, dest)
} else {
fmt.Println(">> Reflect Indirect(d) Elem")
dest = reflect.Indirect(d).Elem()
fmt.Println(">> Dest set")
}
}
entityType := reflect.TypeOf(dest).Elem()
fmt.Println(">> entityType.Kind() ->", entityType.Kind())
var ret error
for i := 0; i < entityType.NumField(); i++ {
structFld := entityType.Field(i)
@ -124,39 +173,11 @@ func (b *DB) Load(path []string, dest any) error {
return ret
}
func (b *DB) Save(path []string, src any) error {
t := reflect.TypeOf(src)
if t.Kind() == reflect.Pointer {
// Save the actual struct
elem := reflect.ValueOf(src).Elem()
return b.Save(path, elem.Interface())
}
if t.Kind() == reflect.Struct {
fields := reflect.VisibleFields(t)
r := reflect.ValueOf(src)
for _, fld := range fields {
f := r.FieldByName(fld.Name)
if (f.Kind() == reflect.Struct || f.Kind() == reflect.Pointer) && f != src {
if f.CanInterface() {
err := b.Save(append(path, FieldName(fld)), f.Interface())
if err != nil {
return err
}
} else {
err := b.Save(append(path, FieldName(fld)), reflect.Indirect(f))
if err != nil {
return err
}
}
} else {
if err := b.Set(path, FieldName(fld), f); err != nil {
return err
}
}
}
} else {
return b.Set(path[:len(path)-1], path[len(path)-1], src)
func (b *DB) loadObject(path []string, v reflect.Value) error {
var fields structFields
switch v.Kind() {
case reflect.Struct:
fields = cachedTypeFields(t)
}
return nil
}
@ -187,3 +208,255 @@ func ReflectValueToInterface(val reflect.Value) interface{} {
return val.Bytes()
}
}
// A field represents a single field found in a struct.
type field struct {
name string
nameBytes []byte // []byte(name)
tag bool
index []int
typ reflect.Type
omitEmpty bool
}
// byIndex sorts fields by index sequence
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
type structFields struct {
list []field
byExactName map[string]*field
byFoldedName map[string]*field
}
// typeFields returns a list of fields that JSON should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
// Anonymous fields to explore at the current level and the next
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// /since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
tag := sf.Tag.Get("boltease")
if tag == "-" {
continue
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),
}
field.nameBytes = []byte(field.name)
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so thta the annihilation code will see a duplicate.
// it only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from boltease tag", then
// breaking ties with index sequence
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with boltease tags are promoted.
//
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with th ename of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
exactNameIndex := make(map[string]*field, len(fields))
foldedNameIndex := make(map[string]*field, len(fields))
for i, field := range fields {
exactNameIndex[field.name] = &fields[i]
// For historical reasons, first folded match takes precedence.
if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok {
foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i]
}
}
return structFields{fields, exactNameIndex, foldedNameIndex}
}
// dominantField looks through the fields, all of which are known to have the
// same name, to find the single field that dominates the others using Go's
// embedding rules, modified by the presence of boltease tags. if there are
// multiple top-level fields, the boolean will be false: This condition is an
// error in Go and we skip all fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return fields[0], true
}
var fieldCache sync.Map // map[reflect.Type]structFields
func cachedTypeFields(t reflect.Type) structFields {
if f, ok := fieldCache.Load(t); ok {
return f.(structFields)
}
f, _ := fieldCache.LoadOrStore(t, typeFields(t))
return f.(structFields)
}
// foldName returns a folded string such that foldName(x) == foldName(y)
// is identical to bytes.EqualFold(x, y).
func foldName(in []byte) []byte {
// This is inlinable to take advantage of "function outlining".
var arr [32768]byte // The max size of a bolt key
return appendFoldedName(arr[:0], in)
}
func appendFoldedName(out, in []byte) []byte {
for i := 0; i < len(in); {
// Handle single-byte ASCII.
if c := in[i]; c < utf8.RuneSelf {
if 'a' <= c && c <= 'z' {
c -= 'a' - 'A'
}
out = append(out, c)
i++
continue
}
// Handle multi-byt eUnicode.
r, n := utf8.DecodeRune(in[i:])
out = utf8.AppendRune(out, foldRune(r))
i += n
}
return out
}
// foldRune returns the smallest rune for all runes in the same fold set.
func foldRune(r rune) rune {
for {
r2 := unicode.SimpleFold(r)
if r2 <= r {
return r2
}
r = r2
}
}

View File

@ -122,7 +122,15 @@ func (b *DB) Set(path []string, key string, val interface{}) error {
case []byte:
return b.SetBytes(path, key, v)
default:
return fmt.Errorf("Unknown Data Type: %v", v)
return fmt.Errorf("Set: Unknown Data Type: %v", v)
}
}
func (b *DB) CanGetForInterface(val interface{}) bool {
switch val.(type) {
case *string, *int, *int8, *int16, *int32, *int64, *bool, *[]byte:
return true
default:
return false
}
}
func (b *DB) GetForInterface(path []string, key string, val interface{}) error {
@ -153,7 +161,7 @@ func (b *DB) GetForInterface(path []string, key string, val interface{}) error {
case *[]byte:
*v, err = b.GetBytes(path, key)
default:
return fmt.Errorf("Unknown Data Type: %v", v)
return fmt.Errorf("GetForInterface: Unknown Data Type: %v", v)
}
return err
}

52
tags.go Normal file
View File

@ -0,0 +1,52 @@
package boltease
import (
"strings"
"unicode"
)
func isValidTag(s string) bool {
if s == "" {
return false
}
for _, c := range s {
switch {
case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
// Backslash and quote chars are reserved, but
// otherwise any punctuation chars are allowed
// in a tag name.
case !unicode.IsLetter(c) && !unicode.IsDigit(c):
return false
}
}
return true
}
// tagOptions is the string following a comma in a struct field's "boltease"
// tag, or the empty string. It does not include the leading comma
type tagOptions string
// parseTag splits a struct field's boltease tag into it sname and
// comma-separated options.
func parseTag(tag string) (string, tagOptions) {
tag, opt, _ := strings.Cut(tag, ",")
return tag, tagOptions(opt)
}
// Contains reports whether a comma-separated list of options
// contains a particular substr flag. Substr must be surrounded by a
// string boundary or commas.
func (o tagOptions) Contains(optionName string) bool {
if len(o) == 0 {
return false
}
s := string(o)
for s != "" {
var name string
name, s, _ = strings.Cut(s, ",")
if name == optionName {
return true
}
}
return false
}