2018 day 12 done

This commit is contained in:
Brian Buller 2018-12-12 16:55:33 -06:00
parent c7af2e1eb7
commit 18d07e81db
2 changed files with 304 additions and 92 deletions

View File

@ -7,136 +7,177 @@ import (
"strings" "strings"
) )
var row map[int]bool const (
var transitions []*Transition MaxInt = int(^uint(0) >> 1)
MinInt = -MaxInt - 1
)
var lastState string
var garden *Garden
func main() { func main() {
inp := StdinToStringSlice() inp := StdinToStringSlice()
BuildRow(inp[0]) garden = NewGarden(strings.Trim(inp[0], "intalsae: "), 0)
for _, v := range inp[2:] { for _, v := range inp[2:] {
transitions = append(transitions, NewTransition(v)) garden.transitions = append(garden.transitions, NewTransition(v))
} }
fmt.Print("St: ") generations := 50000000000
PrintState() var i int
for i := 0; i < 20; i++ { for i = 0; i < generations; i++ {
Tick() lastState = garden.string()
fmt.Printf("%2d: ", i) garden = garden.tick()
PrintState() if garden.string() == lastState {
i++
break
} }
fmt.Println("Total:", GetSum()) }
garden.shiftPots(generations - i)
fmt.Println(garden.sum())
} }
func Tick() { /**
m := make(map[int]bool) * A Garden
lowest, highest := 0, 0 */
for i := range row { type Garden struct {
if i < lowest { pots []*Pot
lowest = i transitions []*Transition
}
func NewGarden(inp string, start int) *Garden {
g := &Garden{}
for k, v := range inp {
p := &Pot{
id: k + start,
value: rb(v),
} }
if i > highest { g.pots = append(g.pots, p)
highest = i
} }
} return g
for i := lowest - 2; i <= highest+2; i++ { }
m[i] = GetNextValue(i)
} func (g *Garden) shiftPots(val int) {
lowest, highest = 0, 0 for i := range g.pots {
for k := range m { g.pots[i].id = g.pots[i].id + val
if k < lowest && m[k] {
lowest = k
}
if k > highest && m[k] {
highest = k
}
}
row = make(map[int]bool)
for i := lowest; i <= highest; i++ {
row[i] = m[i]
} }
} }
func GetSum() int { func (g *Garden) sum() int64 {
var ret int var ret int64
lowest, highest := 0, 0 st, ed := g.getStartIndex(), g.getEndIndex()
for i := range row { for i := st; i <= ed; i++ {
if i < lowest { if g.getPot(i).value {
lowest = i ret += int64(i)
}
if i > highest {
highest = i
}
}
for i := lowest; i <= highest; i++ {
if row[i] {
ret += i
} }
} }
return ret return ret
} }
func BuildRow(inp string) { func (g *Garden) tick() *Garden {
inp = strings.Split(inp, ": ")[1] earliest, latest := g.getStartIndex(), g.getEndIndex()
row = make(map[int]bool) st := earliest - 2
for i, v := range inp { ed := latest + 2
row[i] = rb(v) ret := &Garden{
transitions: g.transitions,
} }
for i := st; i <= ed; i++ {
next := g.getNextStateForPot(i)
if next {
ret.pots = append(ret.pots, &Pot{
id: i,
value: next,
})
}
}
return ret
} }
func GetIdxValue(idx int) byte { func (g *Garden) getNextStateForPot(id int) bool {
var ret byte var ret byte
for i := idx + 2; i >= idx-2; i-- { for i := id - 2; i <= id+2; i++ {
ret = ret << 1 ret = ret << 1
if row[i] { if g.getPot(i).value {
ret = ret | 1 ret = ret | 1
} }
} }
return ret for _, v := range g.transitions {
} if v.GetValue() == ret {
func GetNextValue(idx int) bool {
idxVal := GetIdxValue(idx)
for _, v := range transitions {
if v.GetValue() == idxVal {
return v.next return v.next
} }
} }
return false return false //g.getPot(id).value
} }
func GetValueString(b byte) string { func (g *Garden) substring(st, ed int) string {
var ret string var ret string
for i := 0; i < 5; i++ { for i := st; i <= ed; i++ {
if (b & 1) == 1 { ret += g.getPot(i).string()
ret = ret + "#"
} else {
ret = ret + "."
}
b = b >> 1
} }
return ret return ret
} }
func PrintState() { func (g *Garden) string() string {
lowest, highest := -2, 30 var ret string
for i := range row { for i := g.getStartIndex(); i <= g.getEndIndex(); i++ {
if i < lowest { ret += g.getPot(i).string()
lowest = i
} }
if i > highest { return ret
highest = i
}
}
fmt.Print("(", lowest, ") ")
for i := lowest; i <= highest; i++ {
if row[i] {
fmt.Print("#")
} else {
fmt.Print(".")
}
}
fmt.Println(" (", highest, ") ")
} }
func (g *Garden) transitionStrings() string {
var ret string
for _, v := range g.transitions {
ret = ret + v.string() + "\n"
}
return ret
}
func (g *Garden) getStartIndex() int {
min := MaxInt
for _, v := range g.pots {
if v.id < min {
min = v.id
}
}
return min
}
func (g *Garden) getEndIndex() int {
max := MinInt
for _, v := range g.pots {
if v.id > max {
max = v.id
}
}
return max
}
func (g *Garden) getPot(idx int) *Pot {
for _, v := range g.pots {
if v.id == idx {
return v
}
}
return &Pot{
id: idx,
value: false,
}
}
/**
* A Pot
*/
type Pot struct {
id int
value bool
}
func (p *Pot) string() string {
return bs(p.value)
}
/**
* Transitions
*/
type Transition struct { type Transition struct {
state []bool state []bool
next bool next bool
@ -146,9 +187,12 @@ func NewTransition(inp string) *Transition {
var state []bool var state []bool
var next bool var next bool
pts := strings.Split(inp, " => ") pts := strings.Split(inp, " => ")
for i := len(pts[0]) - 1; i >= 0; i-- { for i := range pts[0] {
state = append(state, bb(pts[0][i])) state = append(state, bb(pts[0][i]))
} }
//for i := len(pts[0]) - 1; i >= 0; i-- {
// state = append(state, bb(pts[0][i]))
//}
next = bb(pts[1][0]) next = bb(pts[1][0])
t := &Transition{ t := &Transition{
state: state, state: state,
@ -157,6 +201,14 @@ func NewTransition(inp string) *Transition {
return t return t
} }
func (t *Transition) string() string {
var ret string
for _, v := range t.state {
ret += bs(v)
}
return ret + " => " + bs(t.next)
}
func (t *Transition) GetValue() byte { func (t *Transition) GetValue() byte {
var ret byte var ret byte
for _, v := range t.state { for _, v := range t.state {
@ -168,6 +220,43 @@ func (t *Transition) GetValue() byte {
return ret return ret
} }
/**
* Helper Functions
*/
// Take a byte and return a string representation of the bits
func byteToString(b byte) string {
var ret string
for i := 0; i < 8; i++ {
if b&1 == 1 {
ret += "#"
} else {
ret += "."
}
b = b >> 1
}
return ret
}
// Take a string representation of a bits and return the byte
func stringToByte(n string) byte {
var b byte
for i := range n {
if n[i] == '#' {
b = b | 1
}
b = b << 1
}
return b
}
func bs(b bool) string {
if b {
return "#"
}
return "."
}
func rb(r rune) bool { func rb(r rune) bool {
return bb(byte(r)) return bb(byte(r))
} }

123
2018/day12/problem Normal file
View File

@ -0,0 +1,123 @@
Advent of Code
--- Day 12: Subterranean Sustainability ---
The year 518 is significantly more underground than your history books implied. Either that, or you've arrived in a vast
cavern network under the North Pole.
After exploring a little, you discover a long tunnel that contains a row of small pots as far as you can see to your left
and right. A few of them contain plants - someone is trying to grow things in these geothermally-heated caves.
The pots are numbered, with 0 in front of you. To the left, the pots are numbered -1, -2, -3, and so on; to the right, 1, 2,
3.... Your puzzle input contains a list of pots from 0 to the right and whether they do (#) or do not (.) currently contain
a plant, the initial state. (No other pots currently contain plants.) For example, an initial state of #..##.... indicates
that pots 0, 3, and 4 currently contain plants.
Your puzzle input also contains some notes you find on a nearby table: someone has been trying to figure out how these
plants spread to nearby pots. Based on the notes, for each generation of plants, a given pot has or does not have a plant
based on whether that pot (and the two pots on either side of it) had a plant in the last generation. These are written as
LLCRR => N, where L are pots to the left, C is the current pot being considered, R are the pots to the right, and N is
whether the current pot will have a plant in the next generation. For example:
 A note like ..#.. => . means that a pot that contains a plant but with no plants within two pots of it will not have a
plant in it during the next generation.
 A note like ##.## => . means that an empty pot with two plants on each side of it will remain empty in the next
generation.
 A note like .##.# => # means that a pot has a plant in a given generation if, in the previous generation, there were
plants in that pot, the one immediately to the left, and the one two pots to the right, but not in the ones immediately
to the right and two to the left.
It's not clear what these plants are for, but you're sure it's important, so you'd like to make sure the current
configuration of plants is sustainable by determining what will happen after 20 generations.
For example, given the following input:
initial state: #..#.#..##......###...###
...## => #
..#.. => #
.#... => #
.#.#. => #
.#.## => #
.##.. => #
.#### => #
#.#.# => #
#.### => #
##.#. => #
##.## => #
###.. => #
###.# => #
####. => #
For brevity, in this example, only the combinations which do produce a plant are listed. (Your input includes all possible
combinations.) Then, the next 20 generations will look like this:
1 2 3
0 0 0 0
0: ...#..#.#..##......###...###...........
1: ...#...#....#.....#..#..#..#...........
2: ...##..##...##....#..#..#..##..........
3: ..#.#...#..#.#....#..#..#...#..........
4: ...#.#..#...#.#...#..#..##..##.........
5: ....#...##...#.#..#..#...#...#.........
6: ....##.#.#....#...#..##..##..##........
7: ...#..###.#...##..#...#...#...#........
8: ...#....##.#.#.#..##..##..##..##.......
9: ...##..#..#####....#...#...#...#.......
10: ..#.#..#...#.##....##..##..##..##......
11: ...#...##...#.#...#.#...#...#...#......
12: ...##.#.#....#.#...#.#..##..##..##.....
13: ..#..###.#....#.#...#....#...#...#.....
14: ..#....##.#....#.#..##...##..##..##....
15: ..##..#..#.#....#....#..#.#...#...#....
16: .#.#..#...#.#...##...#...#.#..##..##...
17: ..#...##...#.#.#.#...##...#....#...#...
18: ..##.#.#....#####.#.#.#...##...##..##..
19: .#..###.#..#.#.#######.#.#.#..#.#...#..
20: .#....##....#####...#######....#.#..##.
The generation is shown along the left, where 0 is the initial state. The pot numbers are shown along the top, where 0
labels the center pot, negative-numbered pots extend to the left, and positive pots extend toward the right. Remember, the
initial state begins at pot 0, which is not the leftmost pot used in this example.
After one generation, only seven plants remain. The one in pot 0 matched the rule looking for ..#.., the one in pot 4
matched the rule looking for .#.#., pot 9 matched .##.., and so on.
In this example, after 20 generations, the pots shown as # contain plants, the furthest left of which is pot -2, and the
furthest right of which is pot 34. Adding up all the numbers of plant-containing pots after the 20th generation produces
325.
After 20 generations, what is the sum of the numbers of all pots which contain a plant?
Your puzzle answer was 2281.
--- Part Two ---
You realize that 20 generations aren't enough. After all, these plants will need to last another 1500 years to even reach
your timeline, not to mention your future.
After fifty billion (50000000000) generations, what is the sum of the numbers of all pots which contain a plant?
Your puzzle answer was 2250000000120.
Both parts of this puzzle are complete! They provide two gold stars: **
References
Visible links
. https://adventofcode.com/
. https://adventofcode.com/2018/about
. https://adventofcode.com/2018/events
. https://adventofcode.com/2018/settings
. https://adventofcode.com/2018/auth/logout
. Advent of Code Supporter
https://adventofcode.com/2018/support
. https://adventofcode.com/2018
. https://adventofcode.com/2018
. https://adventofcode.com/2018/support
. https://adventofcode.com/2018/sponsors
. https://adventofcode.com/2018/leaderboard
. https://adventofcode.com/2018/stats
. https://adventofcode.com/2018/sponsors
. https://adventofcode.com/2018
. https://adventofcode.com/2018/day/12/input