Combine AoC Repos

This commit is contained in:
2016-12-16 16:21:15 -06:00
parent 5977b28d73
commit 105dbd1ff7
151 changed files with 9081 additions and 1 deletions

341
2016/day13/main.go Normal file
View File

@@ -0,0 +1,341 @@
package main
import (
"fmt"
"log"
"os"
"strconv"
"strings"
"time"
"github.com/fatih/color"
termbox "github.com/nsf/termbox-go"
)
var tWidth, tHeight int
// Puzzle 1 Input: 1364 31 39
// Puzzle 1 Test Input: 10 7 4
func main() {
mode := "solve"
if len(os.Args) < 4 {
fmt.Println("Usage: day13 <seed> <dest-x> <dest-y>")
os.Exit(1)
}
seed := atoi(os.Args[1])
destX, destY := atoi(os.Args[2]), atoi(os.Args[3])
if len(os.Args) >= 5 {
mode = os.Args[4]
}
f := CreateFloor(1, 1, destX, destY, seed)
if err := termbox.Init(); err != nil {
panic(err)
}
tWidth, tHeight = termbox.Size()
termbox.Close()
switch mode {
case "solve":
if f.Solve(f.start.x, f.start.y, 0, true) {
f.dispCoord = f.end
}
ClearScreen()
f.Print()
fmt.Println("Shortest Path:", len(f.solvePath.coords))
case "walk":
dist := 50
f.Walk(f.start.x, f.start.y, 0, dist, true)
fmt.Println("Within", dist, "steps: ", len(f.testedPath.coords))
}
}
type Coord struct {
x, y, dist int
}
func (c *Coord) Is(x, y int) bool {
return c.x == x && c.y == y
}
func (c *Coord) Equals(t *Coord) bool {
return c.x == t.x && c.y == t.y
}
func NewCoord(x, y int) *Coord {
return &Coord{x, y, -1}
}
type Path struct {
coords []Coord
}
func (p *Path) Append(c Coord) {
p.coords = append(p.coords, c)
}
func (p *Path) ContainsCoord(x, y int) bool {
for i := range p.coords {
if p.coords[i].Is(x, y) {
return true
}
}
return false
}
func (p *Path) GetCoordAt(x, y int) *Coord {
for i := range p.coords {
if p.coords[i].Is(x, y) {
return &p.coords[i]
}
}
return nil
}
type Floor struct {
start *Coord
end *Coord
seed int
testedPath Path
solvePath Path
dispCoord *Coord
}
func CreateFloor(stX, stY, endX, endY, seed int) *Floor {
f := Floor{
start: NewCoord(stX, stY),
end: NewCoord(endX, endY),
seed: seed,
}
return &f
}
func (f *Floor) Walk(x, y, dist, maxDist int, print bool) {
wrkCoord := Coord{x, y, dist}
if f.IsWall(x, y) || f.testedPath.ContainsCoord(x, y) {
return
}
if dist == maxDist {
f.testedPath.Append(wrkCoord)
return
}
if print {
f.dispCoord = &wrkCoord
ClearScreen()
f.Print()
fmt.Println("Tested Spots:", len(f.testedPath.coords))
time.Sleep(time.Millisecond * 70)
}
if !f.IsWall(x-1, y) {
if t := f.testedPath.GetCoordAt(x-1, y); t != nil {
if t.dist+1 < wrkCoord.dist {
return
}
}
}
if !f.IsWall(x+1, y) {
if t := f.testedPath.GetCoordAt(x+1, y); t != nil {
if t.dist+1 < wrkCoord.dist {
return
}
}
}
if !f.IsWall(x, y-1) {
if t := f.testedPath.GetCoordAt(x, y-1); t != nil {
if t.dist+1 < wrkCoord.dist {
return
}
}
}
if !f.IsWall(x, y+1) {
if t := f.testedPath.GetCoordAt(x, y+1); t != nil {
if t.dist+1 < wrkCoord.dist {
return
}
}
}
f.testedPath.Append(wrkCoord)
// Try intelligently first
// (Attempt to move towards the exit)
if x > 0 {
f.Walk(x-1, y, wrkCoord.dist+1, maxDist, print)
}
if y > 0 {
f.Walk(x, y-1, wrkCoord.dist+1, maxDist, print)
}
f.Walk(x+1, y, wrkCoord.dist+1, maxDist, print)
f.Walk(x, y+1, wrkCoord.dist+1, maxDist, print)
}
func (f *Floor) Solve(x, y, dist int, print bool) bool {
wrkCoord := Coord{x, y, dist}
if f.end.Is(x, y) {
return true
}
if f.IsWall(x, y) || f.testedPath.ContainsCoord(x, y) {
return false
}
// Test if there is a shorter path to this coordinate
if !f.IsWall(x-1, y) {
if t := f.testedPath.GetCoordAt(x-1, y); t != nil {
if t.dist+1 < wrkCoord.dist {
return false
}
}
}
if !f.IsWall(x+1, y) {
if t := f.testedPath.GetCoordAt(x+1, y); t != nil {
if t.dist+1 < wrkCoord.dist {
return false
}
}
}
if !f.IsWall(x, y-1) {
if t := f.testedPath.GetCoordAt(x, y-1); t != nil {
if t.dist+1 < wrkCoord.dist {
return false
}
}
}
if !f.IsWall(x, y+1) {
if t := f.testedPath.GetCoordAt(x, y+1); t != nil {
if t.dist+1 < wrkCoord.dist {
return false
}
}
}
if print {
f.dispCoord = &wrkCoord
ClearScreen()
f.Print()
fmt.Println("Tested Spots:", len(f.testedPath.coords))
time.Sleep(time.Millisecond * 70)
}
f.testedPath.Append(wrkCoord)
// Try intelligently first
// (Attempt to move towards the exit)
if x > f.end.x && x > 0 {
if f.Solve(x-1, y, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
if y > f.end.y && y > 0 {
if f.Solve(x, y-1, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
if x < f.end.x {
if f.Solve(x+1, y, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
if y < f.end.y {
if f.Solve(x, y+1, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
// Intelligence failed us... Just find a move
if x > 0 {
if f.Solve(x-1, y, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
if y > 0 {
if f.Solve(x, y-1, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
}
// This is where it gets shaky...
// Since we have an infinite maze, this could run forever
// So we have a hard cutoff at:
var MaxInt = int(^uint(0) >> 1)
if len(f.testedPath.coords) >= MaxInt {
fmt.Println("ERROR: Couldn't find a path.")
os.Exit(1)
}
if f.Solve(x+1, y, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
if f.Solve(x, y+1, wrkCoord.dist+1, print) {
f.solvePath.Append(wrkCoord)
return true
}
return false
}
func (f *Floor) IsWall(x, y int) bool {
sum := (x*x + 3*x + 2*x*y + y + y*y + f.seed)
s := fmt.Sprintf("%b", sum)
if strings.Count(s, "1")%2 == 0 {
return false
}
return true
}
func (f *Floor) Print() {
wall := color.New(color.BgWhite)
space := color.New(color.FgWhite)
g := color.New(color.BgGreen).Add(color.FgBlack)
g.Add(color.Bold)
r := color.New(color.BgRed)
b := color.New(color.BgBlue).Add(color.BgBlack)
b.Add(color.Bold)
topY, topX := tHeight, tWidth
botY, botX := 0, 0
// We want to center approx 20x20 on our current location
// f.testedPath[len(f.testedPath)-1]?
if len(f.testedPath.coords) > 0 {
cntrCoord := f.testedPath.coords[len(f.testedPath.coords)-1]
if topY < cntrCoord.y+(tHeight/2) {
topY = cntrCoord.y + (tHeight / 2)
}
if topY > tHeight {
botY = topY - tHeight
}
if topX < cntrCoord.x+(tWidth/2) {
topX = cntrCoord.x + (tWidth / 2)
}
if topX > tWidth {
botX = topX - tWidth
}
}
for y := botY; y < topY; y++ {
for x := botX; x < topX; x++ {
if f.dispCoord != nil && f.dispCoord.Is(x, y) {
g.Print("O")
} else if f.solvePath.ContainsCoord(x, y) {
g.Print(".")
} else if f.testedPath.ContainsCoord(x, y) {
r.Print(" ")
} else {
if f.end.Is(x, y) {
b.Print("X")
} else if f.IsWall(x, y) {
wall.Print(" ")
} else {
space.Print(".")
}
}
}
fmt.Println()
}
}
func ClearScreen() {
fmt.Print("\033[H\033[2J")
}
func atoi(i string) int {
var ret int
var err error
if ret, err = strconv.Atoi(i); err != nil {
log.Fatal("Invalid Atoi")
}
return ret
}

77
2016/day13/problem Normal file
View File

@@ -0,0 +1,77 @@
Advent of Code
--- Day 13: A Maze of Twisty Little Cubicles ---
You arrive at the first floor of this new building to discover a much less welcoming environment than the shiny atrium of the
last one. Instead, you are in a maze of twisty little cubicles, all alike.
Every location in this area is addressed by a pair of non-negative integers (x,y). Each such coordinate is either a wall or an
open space. You can't move diagonally. The cube maze starts at 0,0 and seems to extend infinitely toward positive x and y;
negative values are invalid, as they represent a location outside the building. You are in a small waiting area at 1,1.
While it seems chaotic, a nearby morale-boosting poster explains, the layout is actually quite logical. You can determine
whether a given x,y coordinate will be a wall or an open space using a simple system:
 Find x*x + 3*x + 2*x*y + y + y*y.
 Add the office designer's favorite number (your puzzle input).
 Find the binary representation of that sum; count the number of bits that are 1.
 If the number of bits that are 1 is even, it's an open space.
 If the number of bits that are 1 is odd, it's a wall.
For example, if the office designer's favorite number were 10, drawing walls as # and open spaces as ., the corner of the
building containing 0,0 would look like this:
0123456789
0 .#.####.##
1 ..#..#...#
2 #....##...
3 ###.#.###.
4 .##..#..#.
5 ..##....#.
6 #...##.###
Now, suppose you wanted to reach 7,4. The shortest route you could take is marked as O:
0123456789
0 .#.####.##
1 .O#..#...#
2 #OOO.##...
3 ###O#.###.
4 .##OO#OO#.
5 ..##OOO.#.
6 #...##.###
Thus, reaching 7,4 would take a minimum of 11 steps (starting from your current location, 1,1).
What is the fewest number of steps required for you to reach 31,39?
Your puzzle answer was _____.
The first half of this puzzle is complete! It provides one gold star: *
--- Part Two ---
How many locations (distinct x,y coordinates, including your starting location) can you reach in at most 50 steps?
Your puzzle input is still 1364.
Answer: _____________________
References
Visible links
. http://adventofcode.com/
. http://adventofcode.com/2016/about
. http://adventofcode.com/2016/support
. http://adventofcode.com/2016/events
. http://adventofcode.com/2016/settings
. http://adventofcode.com/2016/auth/logout
. http://adventofcode.com/2016
. http://adventofcode.com/2016
. http://adventofcode.com/2016/leaderboard
. http://adventofcode.com/2016/stats
. http://adventofcode.com/2016/sponsors
. http://adventofcode.com/2016/sponsors
. https://en.wikipedia.org/wiki/Binary_number
. https://en.wikipedia.org/wiki/Bit