Many Changes

This commit is contained in:
Brian Buller 2018-05-10 09:44:53 -05:00
parent 3ada0ba277
commit 4d7dc572ce
299 changed files with 64 additions and 144407 deletions

42
Godeps/Godeps.json generated
View File

@ -1,42 +0,0 @@
{
"ImportPath": "git.bullercodeworks.com/brian/gime",
"GoVersion": "go1.10",
"GodepVersion": "v79",
"Deps": [
{
"ImportPath": "git.bullercodeworks.com/brian/gime-lib",
"Rev": "2a2aea8641e8b327544452f900ea4f5fcc43fc7e"
},
{
"ImportPath": "github.com/BurntSushi/toml",
"Comment": "v0.3.0-7-ga368813",
"Rev": "a368813c5e648fee92e5f6c30e3944ff9d5e8895"
},
{
"ImportPath": "github.com/boltdb/bolt",
"Comment": "v1.3.1",
"Rev": "2f1ce7a837dcb8da3ec595b1dac9d0632f0f99e8"
},
{
"ImportPath": "github.com/br0xen/boltease",
"Rev": "8d9019e01b5d4254e206f1e59fb34be36988b736"
},
{
"ImportPath": "github.com/br0xen/user-config",
"Rev": "ea63e80925a92de35c5739274df94822cdab6b36"
},
{
"ImportPath": "github.com/casimir/xdg-go",
"Rev": "372ccc2180dab73316615641d5617c5ed3e35529"
},
{
"ImportPath": "github.com/pborman/uuid",
"Comment": "v1.1",
"Rev": "e790cca94e6cc75c7064b1332e63811d4aae1a53"
},
{
"ImportPath": "golang.org/x/sys/unix",
"Rev": "d8f5ea21b9295e315e612b4bcf4bedea93454d4d"
}
]
}

5
Godeps/Readme generated
View File

@ -1,5 +0,0 @@
This directory tree is generated automatically by godep.
Please do not edit.
See https://github.com/tools/godep for more information.

View File

@ -9,6 +9,21 @@ import (
"git.bullercodeworks.com/brian/gime-lib" "git.bullercodeworks.com/brian/gime-lib"
) )
func GetRoundToDuration() time.Duration {
var dur time.Duration
var err error
if dur, err = time.ParseDuration(cfg.Get("roundto")); err != nil {
cfg.Set("roundto", DefRoundTo)
dur, _ = time.ParseDuration(DefRoundTo)
}
return dur
}
func DurationToDecimal(dur time.Duration) float64 {
mins := dur.Minutes() - (dur.Hours() * 60)
return dur.Hours() + (mins / 60)
}
// filterTimerCollection takes a collection and a function that it runs every entry through // filterTimerCollection takes a collection and a function that it runs every entry through
// If the function returns true for the entry, it adds it to a new collection to be returned // If the function returns true for the entry, it adds it to a new collection to be returned
func filterTimerCollection(c *gime.TimeEntryCollection, fn func(t *gime.TimeEntry) bool) *gime.TimeEntryCollection { func filterTimerCollection(c *gime.TimeEntryCollection, fn func(t *gime.TimeEntry) bool) *gime.TimeEntryCollection {
@ -145,6 +160,20 @@ func findIdOfTimer(tmr *gime.TimeEntry) (int, error) {
return -1, errors.New("Unable to find timer") return -1, errors.New("Unable to find timer")
} }
// pullRemoveTagsFromArgs takes a list of arguments, removes all 'remove tags' from them
// then returns the tags and the remaining args
func pullRemoveTagsFromArgs(args []string) ([]string, []string) {
var tags, rem []string
for _, opt := range args {
if opt[0] == '-' {
tags = append(tags, opt[1:])
} else {
rem = append(rem, opt)
}
}
return tags, rem
}
// pullTagsFromArgs takes a list of arguments, removes all tags from them // pullTagsFromArgs takes a list of arguments, removes all tags from them
// then returns the tags and the remaining args // then returns the tags and the remaining args
func pullTagsFromArgs(args []string) ([]string, []string) { func pullTagsFromArgs(args []string) ([]string, []string) {

31
main.go
View File

@ -1,6 +1,7 @@
package main package main
import ( import (
"bufio"
"fmt" "fmt"
"os" "os"
"sort" "sort"
@ -16,6 +17,7 @@ const (
AppVersion = 1 AppVersion = 1
DefDBName = "gime.db" DefDBName = "gime.db"
DefArchDBName = "gimearch.db" DefArchDBName = "gimearch.db"
DefRoundTo = "1m0s"
) )
var validOperations map[string][]string var validOperations map[string][]string
@ -23,6 +25,7 @@ var opFuncs map[string]func([]string) int
var timeEntries *gime.TimeEntryCollection var timeEntries *gime.TimeEntryCollection
var gdb *gime.GimeDB var gdb *gime.GimeDB
var cfg *userConfig.Config var cfg *userConfig.Config
var roundTo time.Duration
var fuzzyFormats []string var fuzzyFormats []string
@ -55,6 +58,10 @@ func loadActiveAndRecentTimeEntries() {
timeEntries = gdb.LoadTimeEntryCollection(gime.TypeNoArchive) timeEntries = gdb.LoadTimeEntryCollection(gime.TypeNoArchive)
} }
func loadArchiveTimeEntries() {
timeEntries = gdb.LoadTimeEntryCollection(gime.TypeArchive)
}
func getMostRecentTimeEntry() (*gime.TimeEntry, error) { func getMostRecentTimeEntry() (*gime.TimeEntry, error) {
return gdb.GetLatestTimeEntry() return gdb.GetLatestTimeEntry()
} }
@ -70,10 +77,21 @@ func cmdDoConfig(args []string) int {
// Single word triggers // Single word triggers
switch opt { switch opt {
case "reset": case "reset":
fmt.Println("Are you sure you want to reset your configuration? (Y/[N])")
reader := bufio.NewReader(os.Stdin)
conf, _ := reader.ReadString('\n')
conf = strings.TrimSpace(conf)
if conf == "Y" {
fmt.Println("Resetting Configuration...") fmt.Println("Resetting Configuration...")
cfg.Set("dbdir", cfg.GetConfigPath()+"/") cfg.Set("dbdir", cfg.GetConfigPath()+"/")
cfg.Set("dbname", DefDBName) cfg.Set("dbname", DefDBName)
cfg.Set("dbarchname", DefArchDBName) cfg.Set("dbarchname", DefArchDBName)
cfg.Set("roundto", DefRoundTo)
} else {
fmt.Println("Done.")
}
return 0
case "list": case "list":
fmt.Println("Current " + AppName + " config") fmt.Println("Current " + AppName + " config")
for _, v := range cfg.GetKeyList() { for _, v := range cfg.GetKeyList() {
@ -97,6 +115,16 @@ func cmdDoConfig(args []string) int {
cfg.Set("dbname", pts[1]) cfg.Set("dbname", pts[1])
case "dbarchname": case "dbarchname":
cfg.Set("dbarchname", pts[1]) cfg.Set("dbarchname", pts[1])
case "roundto":
// Make sure that we can parse it
durStr := pts[1]
_, err := time.ParseDuration(durStr)
if err != nil {
fmt.Println("Unable to parse duration:", durStr)
durStr = DefRoundTo
}
cfg.Set("roundto", durStr)
fmt.Println("Rounding set to", durStr)
} }
} }
} }
@ -343,6 +371,9 @@ func initialize() {
fmt.Println("Error loading the database") fmt.Println("Error loading the database")
os.Exit(1) os.Exit(1)
} }
if _, err := time.ParseDuration(cfg.Get("roundto")); err != nil {
cfg.Set("roundto", DefRoundTo)
}
fuzzyFormats = []string{ fuzzyFormats = []string{
"1504", "1504",

View File

@ -1,437 +0,0 @@
package main
import (
"fmt"
"strconv"
"strings"
"time"
"git.bullercodeworks.com/brian/gime-lib"
)
// cmdStartTimer takes a list of arguments and returns the return code
// to be passed along to os.Exit
func cmdStartTimer(args []string) int {
var err error
var entry *gime.TimeEntry
// By default we start the timer now
tm := time.Now()
tags, rem := pullTagsFromArgs(args)
if len(rem) > 0 {
// Check if the first argument looks like a date/time
tm, err = parseFuzzyTime(rem[0])
}
tc := new(gime.TagCollection)
for i := range tags {
tc.Push(tags[i])
}
if entry, err = gime.CreateTimeEntry(tm, time.Time{}, tc); err != nil {
fmt.Println(err)
return 1
}
if err = gdb.SaveTimeEntry(entry); err != nil {
fmt.Println(err)
return 1
}
fmt.Println("Started:", TimerToString(entry))
return 0
}
func cmdAddTimer(args []string) int {
var err error
var entry *gime.TimeEntry
// By default we start the timer now
tags, rem := pullTagsFromArgs(args)
var beg, end time.Time
for _, opt := range rem {
var tmpBeg, tmpEnd time.Time
if strings.Contains(opt, "-") {
pts := strings.Split(opt, "-")
if len(pts[0]) > 0 {
// This should be the starting date
tmpBeg, err = parseFuzzyTime(pts[0])
if err != nil {
continue
}
}
if len(pts[1]) > 0 {
// This should be the ending date
tmpEnd, err = parseFuzzyTime(pts[1])
if err != nil {
continue
}
}
}
if !tmpBeg.IsZero() || !tmpEnd.IsZero() {
beg, end = tmpBeg, tmpEnd
}
}
if end.IsZero() {
end = time.Now()
}
tc := new(gime.TagCollection)
for i := range tags {
tc.Push(tags[i])
}
if entry, err = gime.CreateTimeEntry(beg, end, tc); err != nil {
fmt.Println(err)
return 1
}
if err = gdb.SaveTimeEntry(entry); err != nil {
fmt.Println(err)
return 1
}
fmt.Println("Added Time Entry:", TimerToString(entry))
return 0
}
func cmdModifyTimer(args []string) int {
// If no timer id is specified, edit the most recent one
modId := "@0"
tags, rem := pullTagsFromArgs(args)
for i := range rem {
if rem[i][0] == '@' {
modId = rem[i]
}
}
timerId, err := strconv.Atoi(modId[1:])
if err != nil {
fmt.Println("error parsing timer id:", err.Error())
return 1
}
tmr, _, err := findTimerById(timerId)
if err != nil {
fmt.Println(err.Error())
return 1
}
if len(tags) <= 0 {
fmt.Println("Modify only supports adding tags at this time.")
return 1
}
for i := range tags {
tmr.AddTag(tags[i])
}
if err = gdb.SaveTimeEntry(tmr); err != nil {
fmt.Println("Error saving modified timer:", err.Error())
return 1
}
fmt.Println("Modified Timer:")
fmt.Println(" ", TimerToString(tmr))
return 0
}
func cmdContinueTimer(args []string) int {
// Get the last running timer and start a new one with the same tags
te, err := getMostRecentTimeEntry()
if err != nil {
fmt.Println(err.Error())
return 1
}
tagColl := te.GetTags()
var tags []string
for i := 0; i < tagColl.Length(); i++ {
tags = append(tags, "+"+tagColl.Get(i))
}
args = append(args, tags...)
return cmdStartTimer(args)
}
// switchTimer performs a stop on any currently running timers
// and starts a new timer with the given arguments
func cmdSwitchTimer(args []string) int {
stopId := "@all"
stopIdIdx := -1
for i := range args {
// see if we have a timer id in the args
if args[i][0] == '@' {
stopId = args[i]
stopIdIdx = i
}
}
if stopIdIdx >= 0 {
args = append(args[:stopIdIdx], args[stopIdIdx+1:]...)
}
if cmdStopTimer([]string{stopId}) != 0 {
// Error while stopping timers
return 1
}
return cmdStartTimer(args)
}
// cmdStopTimer takes parameters that describe which times to stop
func cmdStopTimer(args []string) int {
// args[0] should be a timer id (starting with '@')
var err error
tm := time.Now()
actTimers := gdb.LoadTimeEntryCollection(gime.TypeCurrent)
var tmr *gime.TimeEntry
stopId := "@0" // By default, stop the first timer
for i := range args {
if args[i][0] == '@' {
stopId = args[i]
continue
}
tmpTm, err := parseFuzzyTime(args[i])
if err == nil {
// We found a time
tm = tmpTm
continue
}
}
if stopId != "@all" {
// Find the timer that we're stopping
timerId, err := strconv.Atoi(stopId[1:])
if err != nil {
fmt.Println("Error parsing timer id:", err.Error())
return 1
}
tmr = actTimers.Get(timerId)
if timerId >= actTimers.Length() || timerId < 0 || tmr == nil {
fmt.Println("Error finding timer with id:", timerId)
return 1
}
}
stopTimer := func(tmr *gime.TimeEntry, at time.Time) int {
tmr.SetEnd(at)
if err = gdb.UpdateTimeEntry(tmr); err != nil {
fmt.Println(err.Error())
return 1
}
fmt.Println("Stopped:", InferTimerDetailString(tmr))
return 0
}
if stopId == "@all" {
var ret int
for i := 0; i < actTimers.Length(); i++ {
ret += stopTimer(actTimers.Get(i), tm)
}
if ret > 0 {
return 1 // One or more stop operations failed
}
return 0
}
// Just stop the one timer
return stopTimer(tmr, tm)
}
// cmdDeleteTimer takes parameters that describe the timers to be deleted.
func cmdDeleteTimer(args []string) int {
var err error
if len(args) < 1 || args[0][0] != '@' {
fmt.Println("Couldn't determine which timer(s) to delete")
return 1
}
// We've got a timer id to delete
timerId, err := strconv.Atoi(args[0][1:])
if err != nil {
fmt.Println("Error parsing timer id: " + err.Error())
return 1
}
tmr, tp, err := findTimerById(timerId)
if err != nil {
fmt.Println(err.Error())
return 1
}
if gdb.RemoveTimeEntry(tmr) != nil {
fmt.Println("Error removing entry " + gime.TypeToString(tp) + "." + tmr.GetUUID())
return 1
}
fmt.Println("Deleted Time Entry: " + TimerToString(tmr))
return 0
}
func cmdPrintList(args []string) int {
loadActiveAndRecentTimeEntries()
useDefaultFilter := true
var showIds bool
var beg, end time.Time
tags, rem := pullTagsFromArgs(args)
for _, opt := range rem {
var tmpBeg, tmpEnd time.Time
// Check for command modifiers
if strings.HasPrefix(opt, ":") {
switch opt {
case ":ids":
showIds = true
// Special durations
case ":day":
beg, _ = parseFuzzyTime("00:00")
end, _ = parseFuzzyTime("23:59")
case ":week":
currDoW := time.Now().Weekday()
beg = time.Now().AddDate(0, 0, int(currDoW)*-1)
beg = time.Date(beg.Year(), beg.Month(), beg.Day(), 0, 0, 0, 0, beg.Location())
case ":month":
currDoM := time.Now().Day()
beg = time.Now().AddDate(0, 0, int(currDoM)*-1)
beg = time.Date(beg.Year(), beg.Month(), beg.Day(), 0, 0, 0, 0, beg.Location())
case ":year":
yr := strconv.Itoa(time.Now().Year())
beg, _ = parseFuzzyTime(yr + "0101T00:00")
end, _ = parseFuzzyTime(yr + "1231T23:59")
}
continue
}
// Do our best to figure out what timers the user wants to list
var err error
if strings.Contains(opt, "-") {
useDefaultFilter = false
pts := strings.Split(opt, "-")
if len(pts[0]) > 0 {
// This should be the starting date
tmpBeg, err = parseFuzzyTime(pts[0])
if err != nil {
continue
}
}
if len(pts[1]) > 0 {
// This should be the ending date
tmpEnd, err = parseFuzzyTime(pts[1])
if err != nil {
continue
}
}
}
if !tmpBeg.IsZero() || !tmpEnd.IsZero() {
beg, end = tmpBeg, tmpEnd
}
}
if end.IsZero() {
end = time.Now()
}
// By default, list all entries ending today or still running
defaultFilter := func(t *gime.TimeEntry) bool {
return t.EndsToday() || t.IsRunning()
}
timeSpanFilter := func(t *gime.TimeEntry) bool {
return t.GetStart().After(beg) && t.GetEnd().Before(end)
}
tagFilter := func(t *gime.TimeEntry) bool {
for i := range tags {
if !t.HasTag(tags[i]) {
return false
}
}
return true
}
compoundFilter := func(t *gime.TimeEntry) bool {
// If we didn't get any other filter specifications, just use the default
if useDefaultFilter {
return defaultFilter(t)
}
// Otherwise we want to filter timespan and tags
return timeSpanFilter(t) && tagFilter(t)
}
dayStr := ""
timers := filterTimerCollection(timeEntries, compoundFilter)
var str string
var currId int
var err error
if timers.Length() == 0 {
begFmt := friendlyFormatForTime(beg)
endFmt := friendlyFormatForTime(end)
useFmt := endFmt
if len(begFmt) > len(endFmt) {
useFmt = begFmt
}
fmt.Println("No timers found in period " + beg.Format(useFmt) + " - " + end.Format(useFmt))
return 0
}
for i := 0; i < timers.Length(); i++ {
wrk := timers.Get(i)
oldDayStr := dayStr
dayStr = wrk.GetStart().Format("2006/01/02")
if dayStr != oldDayStr {
str += fmt.Sprintln(dayStr)
}
id := ""
if showIds {
if currId, err = findIdOfTimer(wrk); err == nil {
id = fmt.Sprintf("%3s", fmt.Sprintf("@%d", currId))
} else {
id = "@!"
}
}
str += fmt.Sprintf(" %s %s\n", id, TimerToString(timers.Get(i)))
}
fmt.Println(str)
return 0
}
func cmdPrintDetail(args []string) int {
fmt.Println("Not implemented yet.")
return 1
}
func cmdDoArchive(args []string) int {
if len(args) == 0 {
fmt.Println("Nothing to do")
return 1
}
var tags []string
tags, args = pullTagsFromArgs(args)
var bef time.Time
var err error
if len(args) > 0 {
bef, err = parseFuzzyTime(args[0])
}
if bef.IsZero() && len(tags) == 0 {
fmt.Println("Couldn't figure out what to archive")
return 1
}
ret := 0
loadActiveAndRecentTimeEntries()
tagFilter := func(t *gime.TimeEntry) bool {
for i := range tags {
if !t.HasTag(tags[i]) {
return false
}
}
return true
}
if len(tags) > 0 {
timeEntries = filterTimerCollection(timeEntries, tagFilter)
}
fmt.Print("Archive all timers ")
if !bef.IsZero() {
fmt.Print("before ", bef, " ")
}
if len(tags) > 0 {
fmt.Print("with tags ", tags)
}
for i := 0; i < timeEntries.Length(); i++ {
tst := timeEntries.Get(i)
archIt := false
if !bef.IsZero() {
archIt = tst.GetEnd().Before(bef)
} else {
archIt = true
}
if archIt {
fmt.Print(".")
if err = gdb.ArchiveTimeEntry(tst); err != nil {
fmt.Print("Error archiving entry (", tst.GetUUID(), ")", err.Error())
ret = 1
}
}
}
fmt.Println("Done")
return ret
}
func cmdDoExport(args []string) int {
return 0
}

View File

@ -1,29 +0,0 @@
# ---> Go
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof
# Gomobile files
gime-sources.jar
gime.aar

View File

@ -1,8 +0,0 @@
MIT License
Copyright (c) <year> <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,3 +0,0 @@
# gime
Timekeeping system

View File

@ -1,166 +0,0 @@
package gime
import (
"errors"
"fmt"
"time"
"github.com/br0xen/boltease"
)
type GimeDB struct {
db *boltease.DB
archDb *boltease.DB
dbOpened int
dbArchOpened int
path string
filename, arch string
AllTypes []int
}
const (
TypeCurrent = 1 // 001
TypeRecent = 2 // 010
TypeNoArchive = 3 // 011
TypeArchive = 4 // 100
TypeAll = 7 // 111
TypeError = 8 //1000
ArchiveDays = time.Hour * 24 * 90 // Archive anything older than 90 days
)
func TypeToString(tp int) string {
switch tp {
case TypeCurrent:
return "current"
case TypeRecent:
return "recent"
case TypeArchive:
return "archive"
}
return "unknown"
}
// Load Database returns a database loaded off the files given
// name and archName located in path
func LoadDatabase(path, name, archName string) (*GimeDB, error) {
if path[len(path)-1] != '/' {
path = path + "/"
}
gdb := GimeDB{
path: path,
filename: name,
arch: archName,
AllTypes: []int{TypeCurrent, TypeRecent, TypeArchive},
}
if err := gdb.initDatabase(); err != nil {
fmt.Println(err.Error())
return nil, err
}
return &gdb, nil
}
// Load a TimeEntry collection from a database
func (gdb *GimeDB) LoadTimeEntryCollection(tp int) *TimeEntryCollection {
ret := new(TimeEntryCollection)
entries := gdb.dbGetAllTimeEntries(tp)
for i := range entries {
ret.Push(&entries[i])
}
return ret
}
func (gdb *GimeDB) openDatabase() error {
gdb.dbOpened += 1
if gdb.dbOpened == 1 {
var err error
gdb.db, err = boltease.Create(gdb.path+gdb.filename, 0600, nil)
if err != nil {
return err
}
}
return nil
}
func (gdb *GimeDB) closeDatabase() error {
gdb.dbOpened -= 1
if gdb.dbOpened == 0 {
return gdb.db.CloseDB()
}
return nil
}
func (gdb *GimeDB) openArchiveDatabase() error {
gdb.dbArchOpened += 1
if gdb.dbArchOpened == 1 {
var err error
gdb.archDb, err = boltease.Create(gdb.path+gdb.arch, 0600, nil)
if err != nil {
return err
}
}
return nil
}
func (gdb *GimeDB) closeArchiveDatabase() error {
gdb.dbArchOpened -= 1
if gdb.dbArchOpened == 0 {
return gdb.archDb.CloseDB()
}
return nil
}
func (gdb *GimeDB) initDatabase() error {
// Initialize the current/recent/settings database
var err error
if err = gdb.openDatabase(); err != nil {
return err
}
defer gdb.closeDatabase()
// Create the path to the bucket to store application settings
if err := gdb.db.MkBucketPath([]string{"settings"}); err != nil {
return err
}
// Create the path to the bucket to store the current time entry
if err := gdb.db.MkBucketPath([]string{TypeToString(TypeCurrent)}); err != nil {
return err
}
// Create the path to the bucket to store recent time entries
if err := gdb.db.MkBucketPath([]string{TypeToString(TypeRecent)}); err != nil {
return err
}
// Now initialize the Archive Database
if err = gdb.openArchiveDatabase(); err != nil {
return err
}
defer gdb.closeArchiveDatabase()
// Create the path to the bucket to store archived time entries
return gdb.archDb.MkBucketPath([]string{TypeToString(TypeArchive)})
}
func (gdb *GimeDB) openDBType(tp int) (*boltease.DB, error) {
var err error
if tp == TypeCurrent || tp == TypeRecent {
if err = gdb.openDatabase(); err != nil {
return nil, err
}
return gdb.db, err
} else if tp == TypeArchive {
if err = gdb.openArchiveDatabase(); err != nil {
return nil, err
}
return gdb.archDb, err
}
return nil, errors.New("Invalid database type: " + TypeToString(tp))
}
func (gdb *GimeDB) closeDBType(tp int) error {
if tp == TypeCurrent || tp == TypeRecent {
return gdb.closeDatabase()
} else if tp == TypeArchive {
return gdb.closeArchiveDatabase()
}
return errors.New("Invalid database type: " + TypeToString(tp))
}

View File

@ -1,288 +0,0 @@
package gime
import (
"errors"
"sort"
"strconv"
"time"
"github.com/br0xen/boltease"
)
// GetLastTimeEntry pulls the time entry with the most recent stop time
func (gdb *GimeDB) GetLatestTimeEntry() (*TimeEntry, error) {
var ret *TimeEntry
var err error
var useDb *boltease.DB
if useDb, err = gdb.openDBType(TypeRecent); err != nil {
return ret, err
}
defer gdb.closeDBType(TypeRecent)
var sttimes []string
if sttimes, err = useDb.GetBucketList([]string{TypeToString(TypeRecent)}); err != nil {
return ret, err
}
sort.Slice(sttimes, func(i, j int) bool {
return sttimes[j] < sttimes[i]
})
// The first entry should be the most recent
if len(sttimes) > 0 {
return gdb.dbGetTimeEntry(TypeRecent, sttimes[0])
}
return nil, errors.New("No recent time entries found")
}
// findTimeEntryAndTypeByUUID searches all entries
// for the time entry with the given uuid, return the TimeEntry, the type, and/or and error
// Types are searched TypeCurrent -> TypeRecent -> TypeArchive
func (gdb *GimeDB) findTimeEntryAndTypeByUUID(uuid string) (*TimeEntry, int, error) {
for i := range gdb.AllTypes {
timeCollection := gdb.LoadTimeEntryCollection(gdb.AllTypes[i])
for j := 0; j < timeCollection.Length(); j++ {
if timeCollection.Get(j).GetUUID() == uuid {
return timeCollection.Get(j), gdb.AllTypes[i], nil
}
}
}
return nil, TypeAll, errors.New("Unable to find time entry with uuid " + uuid)
}
// FindTimeEntryByUUID searches all entries
// for the time entry with the given uuid, return the TimeEntry, the type, and/or and error
// Types are searched TypeCurrent -> TypeRecent -> TypeArchive
func (gdb *GimeDB) FindTimeEntryByUUID(uuid string) (*TimeEntry, error) {
te, _, err := gdb.findTimeEntryAndTypeByUUID(uuid)
return te, err
}
// SaveTimeEntry creates a time entry in the database
// If TimeEntry.end is zero, then it puts it in TypeCurrent
func (gdb *GimeDB) SaveTimeEntry(te *TimeEntry) error {
tp := TypeRecent
if te.end.IsZero() {
// Currently running
tp = TypeCurrent
}
return gdb.SaveTimeEntryType(tp, te)
}
func (gdb *GimeDB) SaveTimeEntryType(tp int, te *TimeEntry) error {
var err error
var useDb *boltease.DB
useDb, err = gdb.openDBType(tp)
if err != nil {
return err
}
tePath := []string{TypeToString(tp), te.start.Format(time.RFC3339)}
if err = useDb.SetValue(tePath, "uuid", te.uuid); err != nil {
return err
}
if err = useDb.SetTimestamp(tePath, "start", te.start); err != nil {
return err
}
if err = useDb.SetTimestamp(tePath, "end", te.end); err != nil {
return err
}
for i := 0; i < te.tags.Length(); i++ {
err = useDb.SetValue(append(tePath, "tags"), strconv.Itoa(i), te.tags.Get(i))
}
return nil
}
func (gdb *GimeDB) ArchiveTimeEntry(te *TimeEntry) error {
if err := gdb.RemoveTimeEntryFromCategory(te, TypeRecent); err != nil {
return err
}
return gdb.SaveTimeEntryType(TypeArchive, te)
}
// ArchiveTimeEntry takes a time from TypeRecent and moves it to TypeArchive
func (gdb *GimeDB) ArchiveTimeEntryByUUID(uuid string) error {
archTime, tp, err := gdb.findTimeEntryAndTypeByUUID(uuid)
if tp != TypeRecent {
return errors.New("Couldn't find timer to archive in the 'Recent' bucket")
}
if err = gdb.RemoveTimeEntry(archTime); err != nil {
return err
}
return gdb.SaveTimeEntryType(TypeArchive, archTime)
}
// UpdateTimeEntry updates the time entry in the database
// It first finds the current entry in the database by the uuid
func (gdb *GimeDB) UpdateTimeEntry(te *TimeEntry) error {
var err error
if te.uuid == "" {
return errors.New("Given time entry has no uuid")
}
if err = gdb.RemoveTimeEntry(te); err != nil {
return err
}
return gdb.SaveTimeEntry(te)
}
// RemoveTimeEntry removes a time entry with the given uuid from the database
func (gdb *GimeDB) RemoveTimeEntry(te *TimeEntry) error {
for _, v := range gdb.AllTypes {
if gdb.RemoveTimeEntryFromCategory(te, v) == nil {
return nil
}
}
return errors.New("Couldn't find Time Entry to Remove")
}
func (gdb *GimeDB) RemoveTimeEntryFromCategory(te *TimeEntry, tp int) error {
if !gdb.dbTimeEntryIsInCategory(te, tp) {
return errors.New("Couldn't find timer to remove in the given bucket")
}
var err error
var useDb *boltease.DB
if useDb, err = gdb.openDBType(tp); err != nil {
return err
}
defer gdb.closeDBType(tp)
return useDb.DeleteBucket([]string{TypeToString(tp)}, te.start.Format(time.RFC3339))
}
func (gdb *GimeDB) RemoveTimeEntryByUUID(uuid string) error {
fndEntry, tp, err := gdb.findTimeEntryAndTypeByUUID(uuid)
if err != nil {
return errors.New("Unable to find time entry with uuid " + uuid)
}
var useDb *boltease.DB
if useDb, err = gdb.openDBType(tp); err != nil {
return err
}
defer gdb.closeDBType(tp)
if err != nil {
return err
}
return useDb.DeleteBucket([]string{TypeToString(tp)}, fndEntry.start.Format(time.RFC3339))
}
// GetTimeEntriesInRange takes two times and returns all time entries that occur
// on or between those dates
func (gdb *GimeDB) GetTimeEntriesInRange(st time.Time, end time.Time) *TimeEntryCollection {
var err error
ret := new(TimeEntryCollection)
if time.Since(st) > ArchiveDays {
if err = gdb.openArchiveDatabase(); err != nil {
return ret
}
defer gdb.closeArchiveDatabase()
var sttimes []string
if sttimes, err = gdb.db.GetBucketList([]string{TypeToString(TypeArchive)}); err != nil {
return ret
}
for i := len(sttimes) - 1; i > 0; i-- {
}
}
return ret
}
// dbGetAllTimeEntries gets all time entries of a specific type
// tp can be:
// TypeCurrent = "current"
// TypeRecent = "recent"
// TypeArchive = "archive"
// TypeAll = "unknown" - Returns _ALL_ entries
// Getting all archived time entries has the potential to be a lot of data
func (gdb *GimeDB) dbGetAllTimeEntries(tp int) []TimeEntry {
var ret []TimeEntry
if tp == TypeAll {
for _, v := range gdb.AllTypes {
ret = append(ret, gdb.dbGetAllTimeEntries(v)...)
}
return ret
} else if tp == TypeNoArchive {
ret = append(ret, gdb.dbGetAllTimeEntries(TypeCurrent)...)
ret = append(ret, gdb.dbGetAllTimeEntries(TypeRecent)...)
return ret
}
var useDb *boltease.DB
var err error
if useDb, err = gdb.openDBType(tp); err != nil {
return ret
}
defer gdb.closeDBType(tp)
var sttimes []string
if sttimes, err = useDb.GetBucketList([]string{TypeToString(tp)}); err != nil {
return ret
}
sort.Slice(sttimes, func(i, j int) bool {
return sttimes[j] < sttimes[i]
})
for _, v := range sttimes {
if te, _ := gdb.dbGetTimeEntry(tp, v); te != nil {
ret = append(ret, *te)
}
}
return ret
}
func (gdb *GimeDB) dbFindTimeEntryCategory(te *TimeEntry) int {
for _, v := range gdb.AllTypes {
if gdb.dbTimeEntryIsInCategory(te, v) {
return v
}
}
return TypeError
}
func (gdb *GimeDB) dbTimeEntryIsInCategory(te *TimeEntry, tp int) bool {
_, err := gdb.dbGetTimeEntry(tp, te.start.Format(time.RFC3339))
return err == nil
}
// dbGetTimeEntry pulls a time entry of type tp with the given start time
// from the db and returns it.
func (gdb *GimeDB) dbGetTimeEntry(tp int, sttm string) (*TimeEntry, error) {
var ret *TimeEntry
var err error
if tp == TypeAll {
// Loop through the types and return the first entry found that matches
for _, v := range gdb.AllTypes {
ret, _ = gdb.dbGetTimeEntry(v, sttm)
if ret != nil {
return ret, nil
}
}
return nil, errors.New("Couldn't find time entry")
}
var useDb *boltease.DB
if useDb, err = gdb.openDBType(tp); err != nil {
return ret, err
}
defer gdb.closeDBType(tp)
entryPath := []string{TypeToString(tp), sttm}
ret = new(TimeEntry)
if ret.uuid, err = useDb.GetValue(entryPath, "uuid"); err != nil {
return nil, errors.New("Unable to read entry uuid")
}
if ret.start, err = useDb.GetTimestamp(entryPath, "start"); err != nil {
return nil, errors.New("Unable to read entry start time")
}
if ret.end, err = useDb.GetTimestamp(entryPath, "end"); err != nil {
return nil, errors.New("Unable to read entry end time")
}
var keys []string
entryTagsPath := append(entryPath, "tags")
if keys, err = useDb.GetKeyList(entryTagsPath); err != nil {
keys = []string{}
}
ret.tags = new(TagCollection)
for i := range keys {
var val string
if val, err = useDb.GetValue(entryTagsPath, keys[i]); err == nil {
ret.tags.Push(val)
}
}
return ret, nil
}

View File

@ -1,80 +0,0 @@
package gime
import "fmt"
// TagCollection is a collection of strings for gomobile bindings
type TagCollection struct {
list []string
}
// Length returns the number of tags in the collection
func (tc *TagCollection) Length() int {
return len(tc.list)
}
// Get returns the string at idx or an empty string
func (tc *TagCollection) Get(idx int) string {
if idx < tc.Length() {
return tc.list[idx]
}
return ""
}
// Clear empties the list of Tags
func (tc *TagCollection) Clear() {
tc.list = tc.list[:0]
}
// Index finds the index of the given string or -1 if not found
func (tc *TagCollection) Index(t string) int {
for i, tst := range tc.list {
if tst == t {
return i
}
}
return -1
}
// Insert inserts a string into the collection at i
func (tc *TagCollection) Insert(i int, t string) {
if i < 0 || i > tc.Length() {
fmt.Println("gime: Attempted to insert string at invalid index")
}
tc.list = append(tc.list, "")
copy(tc.list[i+1:], tc.list[i:])
tc.list[i] = t
}
// Remove removes the string at i from the collection
func (tc *TagCollection) Remove(i int) {
if i < 0 || i >= tc.Length() {
fmt.Println("gime: Attempted to remove tag at invalid index")
}
copy(tc.list[i:], tc.list[i+1:])
tc.list[len(tc.list)-1] = ""
tc.list = tc.list[:len(tc.list)-1]
}
// Push adds an element to the end of the collection
func (tc *TagCollection) Push(t string) {
tc.Insert(tc.Length(), t)
}
// Pop removes the last element from the collection
func (tc *TagCollection) Pop() string {
ret := tc.list[tc.Length()-1]
tc.Remove(tc.Length() - 1)
return ret
}
// Unshift adds an element to the front of the collection
func (tc *TagCollection) Unshift(t string) {
tc.Insert(0, t)
}
// Shift removes an element from the front of the collection
func (tc *TagCollection) Shift() string {
ret := tc.list[0]
tc.Remove(0)
return ret
}

View File

@ -1,147 +0,0 @@
package gime
import (
"errors"
"time"
"github.com/pborman/uuid"
)
// Entry is a time entry
type TimeEntry struct {
uuid string
start time.Time
end time.Time
tags *TagCollection
}
// CreateTimeEntry creates an entry with the given parameters and returns it.
// An error is returned if no start time is given or if the end time given is
// non-zero and earlier than the start time.
func CreateTimeEntry(s, e time.Time, t *TagCollection) (*TimeEntry, error) {
ret := new(TimeEntry)
ret.uuid = uuid.New()
if s.IsZero() {
// No start time given, return error
return ret, errors.New("No start time given")
}
ret.start = s
if !e.IsZero() {
if !e.After(s) {
// Given end time is earlier than start time
return ret, errors.New("End time is before start time")
}
}
ret.end = e
ret.tags = t
return ret, nil
}
// GetUUID returns the UUID for the entry
func (t *TimeEntry) GetUUID() string {
return t.uuid
}
// GetStart returns the start time for the entry
func (t *TimeEntry) GetStart() time.Time {
return t.start
}
// SetStart sets the start time on the time entry
func (t *TimeEntry) SetStart(s time.Time) {
t.start = s
}
// GetEnd returns the end time for the entry
func (t *TimeEntry) GetEnd() time.Time {
return t.end
}
// SetEnd sets the end time on the time entry
func (t *TimeEntry) SetEnd(e time.Time) {
t.end = e
}
// IsActive return true if start is earlier than now and end is zero
func (t *TimeEntry) IsActive() bool {
return time.Now().After(t.start) && !t.end.IsZero()
}
// GetTags returns all of the tags associated with this time entry
func (t *TimeEntry) GetTags() *TagCollection {
return t.tags
}
// HasTag returns if the time entry contains a specific tag
func (t *TimeEntry) HasTag(s string) bool {
for i := 0; i < t.tags.Length(); i++ {
if t.tags.Get(i) == s {
return true
}
}
return false
}
// AddTag adds a tag to the time entry (if it isn't already there)
func (t *TimeEntry) AddTag(s string) {
if !t.HasTag(s) {
t.tags.Push(s)
}
}
// RemoveTag removes a tag from the time entry
func (t *TimeEntry) RemoveTag(s string) {
i := t.tags.Index(s)
if i != -1 {
t.tags.Remove(i)
}
}
// Equals tests if the passed time entry is the same
// as the one that we're calling it on.
func (t *TimeEntry) Equals(tst *TimeEntry) bool {
return t.uuid == tst.uuid
}
// StartsToday returns if the timer's start time is today
func (t *TimeEntry) StartsToday() bool {
currTime := time.Now()
dur := int64(currTime.Hour())*int64(time.Hour) + int64(currTime.Minute())*int64(time.Minute)
return int64(time.Since(t.GetStart())) < dur
}
// StartsToday returns if the timer's end time is today
func (t *TimeEntry) EndsToday() bool {
currTime := time.Now()
dur := int64(currTime.Hour())*int64(time.Hour) + int64(currTime.Minute())*int64(time.Minute)
return int64(time.Since(t.GetEnd())) < dur
}
// IsRunning returns if the timer is still running
func (t *TimeEntry) IsRunning() bool {
return t.GetEnd().IsZero()
}
// String formats a string of the time entry
func (t *TimeEntry) String() string {
var ret string
ret = t.GetStart().Format(time.RFC3339)
if !t.GetEnd().IsZero() {
ret += " - " + t.GetEnd().Format(time.RFC3339)
}
tags := t.GetTags()
if tags.Length() > 0 {
ret += " [ "
for i := 0; i < tags.Length(); i++ {
ret += tags.Get(i) + " "
}
ret += "]"
}
if t.GetEnd().IsZero() {
ret += " Running"
}
if t.GetUUID() != "" {
ret += " (" + t.GetUUID() + ")"
}
return ret
}

View File

@ -1,80 +0,0 @@
package gime
import "fmt"
// TimeEntryCollection is a collection of Time Entries for gomobile bindings
type TimeEntryCollection struct {
list []TimeEntry
}
// Length returns how many time entries are in the collection
func (tc *TimeEntryCollection) Length() int {
return len(tc.list)
}
// Get returns the TimeEntry at idx or a nil entry
func (tc *TimeEntryCollection) Get(idx int) *TimeEntry {
if idx < tc.Length() {
return &tc.list[idx]
}
return nil
}
// Clear empties the list of TimeEntries
func (tc *TimeEntryCollection) Clear() {
tc.list = tc.list[:0]
}
// Index finds the index of the given TimeEntry or -1 if not found
func (tc *TimeEntryCollection) Index(t *TimeEntry) int {
for i, tst := range tc.list {
if tst.Equals(t) {
return i
}
}
return -1
}
// Insert inserts a TimeEntry into the collection at i
func (tc *TimeEntryCollection) Insert(i int, t *TimeEntry) {
if i < 0 || i > tc.Length() {
fmt.Println("gime: Attempted to insert time entry at invalid index")
}
tc.list = append(tc.list, TimeEntry{})
copy(tc.list[i+1:], tc.list[i:])
tc.list[i] = *t
}
// Remove removes the TimeEntry at i from the collection
func (tc *TimeEntryCollection) Remove(i int) {
if i < 0 || i >= tc.Length() {
fmt.Println("gime: Attempted to remove time entry at invalid index")
}
copy(tc.list[i:], tc.list[i+1:])
tc.list[len(tc.list)-1] = TimeEntry{}
tc.list = tc.list[:len(tc.list)-1]
}
// Push adds an element to the end of the collection
func (tc *TimeEntryCollection) Push(t *TimeEntry) {
tc.Insert(tc.Length(), t)
}
// Pop removes the last element from the collection
func (tc *TimeEntryCollection) Pop() *TimeEntry {
ret := tc.list[tc.Length()-1]
tc.Remove(tc.Length() - 1)
return &ret
}
// Unshift adds an element to the front of the collection
func (tc *TimeEntryCollection) Unshift(t *TimeEntry) {
tc.Insert(0, t)
}
// Shift removes an element from the front of the collection
func (tc *TimeEntryCollection) Shift() *TimeEntry {
ret := tc.list[0]
tc.Remove(0)
return &ret
}

View File

@ -1,5 +0,0 @@
TAGS
tags
.*.swp
tomlcheck/tomlcheck
toml.test

View File

@ -1,15 +0,0 @@
language: go
go:
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- tip
install:
- go install ./...
- go get github.com/BurntSushi/toml-test
script:
- export PATH="$PATH:$HOME/gopath/bin"
- make test

View File

@ -1,3 +0,0 @@
Compatible with TOML version
[v0.4.0](https://github.com/toml-lang/toml/blob/v0.4.0/versions/en/toml-v0.4.0.md)

View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 TOML authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -1,19 +0,0 @@
install:
go install ./...
test: install
go test -v
toml-test toml-test-decoder
toml-test -encoder toml-test-encoder
fmt:
gofmt -w *.go */*.go
colcheck *.go */*.go
tags:
find ./ -name '*.go' -print0 | xargs -0 gotags > TAGS
push:
git push origin master
git push github master

View File

@ -1,218 +0,0 @@
## TOML parser and encoder for Go with reflection
TOML stands for Tom's Obvious, Minimal Language. This Go package provides a
reflection interface similar to Go's standard library `json` and `xml`
packages. This package also supports the `encoding.TextUnmarshaler` and
`encoding.TextMarshaler` interfaces so that you can define custom data
representations. (There is an example of this below.)
Spec: https://github.com/toml-lang/toml
Compatible with TOML version
[v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md)
Documentation: https://godoc.org/github.com/BurntSushi/toml
Installation:
```bash
go get github.com/BurntSushi/toml
```
Try the toml validator:
```bash
go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml
```
[![Build Status](https://travis-ci.org/BurntSushi/toml.svg?branch=master)](https://travis-ci.org/BurntSushi/toml) [![GoDoc](https://godoc.org/github.com/BurntSushi/toml?status.svg)](https://godoc.org/github.com/BurntSushi/toml)
### Testing
This package passes all tests in
[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder
and the encoder.
### Examples
This package works similarly to how the Go standard library handles `XML`
and `JSON`. Namely, data is loaded into Go values via reflection.
For the simplest example, consider some TOML file as just a list of keys
and values:
```toml
Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z
```
Which could be defined in Go as:
```go
type Config struct {
Age int
Cats []string
Pi float64
Perfection []int
DOB time.Time // requires `import time`
}
```
And then decoded with:
```go
var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
// handle error
}
```
You can also use struct tags if your struct field name doesn't map to a TOML
key value directly:
```toml
some_key_NAME = "wat"
```
```go
type TOML struct {
ObscureKey string `toml:"some_key_NAME"`
}
```
### Using the `encoding.TextUnmarshaler` interface
Here's an example that automatically parses duration strings into
`time.Duration` values:
```toml
[[song]]
name = "Thunder Road"
duration = "4m49s"
[[song]]
name = "Stairway to Heaven"
duration = "8m03s"
```
Which can be decoded with:
```go
type song struct {
Name string
Duration duration
}
type songs struct {
Song []song
}
var favorites songs
if _, err := toml.Decode(blob, &favorites); err != nil {
log.Fatal(err)
}
for _, s := range favorites.Song {
fmt.Printf("%s (%s)\n", s.Name, s.Duration)
}
```
And you'll also need a `duration` type that satisfies the
`encoding.TextUnmarshaler` interface:
```go
type duration struct {
time.Duration
}
func (d *duration) UnmarshalText(text []byte) error {
var err error
d.Duration, err = time.ParseDuration(string(text))
return err
}
```
### More complex usage
Here's an example of how to load the example from the official spec page:
```toml
# This is a TOML document. Boom.
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]
```
And the corresponding Go types are:
```go
type tomlConfig struct {
Title string
Owner ownerInfo
DB database `toml:"database"`
Servers map[string]server
Clients clients
}
type ownerInfo struct {
Name string
Org string `toml:"organization"`
Bio string
DOB time.Time
}
type database struct {
Server string
Ports []int
ConnMax int `toml:"connection_max"`
Enabled bool
}
type server struct {
IP string
DC string
}
type clients struct {
Data [][]interface{}
Hosts []string
}
```
Note that a case insensitive match will be tried if an exact match can't be
found.
A working example of the above can be found in `_examples/example.{go,toml}`.

View File

@ -1,509 +0,0 @@
package toml
import (
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"time"
)
func e(format string, args ...interface{}) error {
return fmt.Errorf("toml: "+format, args...)
}
// Unmarshaler is the interface implemented by objects that can unmarshal a
// TOML description of themselves.
type Unmarshaler interface {
UnmarshalTOML(interface{}) error
}
// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
func Unmarshal(p []byte, v interface{}) error {
_, err := Decode(string(p), v)
return err
}
// Primitive is a TOML value that hasn't been decoded into a Go value.
// When using the various `Decode*` functions, the type `Primitive` may
// be given to any value, and its decoding will be delayed.
//
// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
//
// The underlying representation of a `Primitive` value is subject to change.
// Do not rely on it.
//
// N.B. Primitive values are still parsed, so using them will only avoid
// the overhead of reflection. They can be useful when you don't know the
// exact type of TOML data until run time.
type Primitive struct {
undecoded interface{}
context Key
}
// DEPRECATED!
//
// Use MetaData.PrimitiveDecode instead.
func PrimitiveDecode(primValue Primitive, v interface{}) error {
md := MetaData{decoded: make(map[string]bool)}
return md.unify(primValue.undecoded, rvalue(v))
}
// PrimitiveDecode is just like the other `Decode*` functions, except it
// decodes a TOML value that has already been parsed. Valid primitive values
// can *only* be obtained from values filled by the decoder functions,
// including this method. (i.e., `v` may contain more `Primitive`
// values.)
//
// Meta data for primitive values is included in the meta data returned by
// the `Decode*` functions with one exception: keys returned by the Undecoded
// method will only reflect keys that were decoded. Namely, any keys hidden
// behind a Primitive will be considered undecoded. Executing this method will
// update the undecoded keys in the meta data. (See the example.)
func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
md.context = primValue.context
defer func() { md.context = nil }()
return md.unify(primValue.undecoded, rvalue(v))
}
// Decode will decode the contents of `data` in TOML format into a pointer
// `v`.
//
// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
// used interchangeably.)
//
// TOML arrays of tables correspond to either a slice of structs or a slice
// of maps.
//
// TOML datetimes correspond to Go `time.Time` values.
//
// All other TOML types (float, string, int, bool and array) correspond
// to the obvious Go types.
//
// An exception to the above rules is if a type implements the
// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
// (floats, strings, integers, booleans and datetimes) will be converted to
// a byte string and given to the value's UnmarshalText method. See the
// Unmarshaler example for a demonstration with time duration strings.
//
// Key mapping
//
// TOML keys can map to either keys in a Go map or field names in a Go
// struct. The special `toml` struct tag may be used to map TOML keys to
// struct fields that don't match the key name exactly. (See the example.)
// A case insensitive match to struct names will be tried if an exact match
// can't be found.
//
// The mapping between TOML values and Go values is loose. That is, there
// may exist TOML values that cannot be placed into your representation, and
// there may be parts of your representation that do not correspond to
// TOML values. This loose mapping can be made stricter by using the IsDefined
// and/or Undecoded methods on the MetaData returned.
//
// This decoder will not handle cyclic types. If a cyclic type is passed,
// `Decode` will not terminate.
func Decode(data string, v interface{}) (MetaData, error) {
rv := reflect.ValueOf(v)
if rv.Kind() != reflect.Ptr {
return MetaData{}, e("Decode of non-pointer %s", reflect.TypeOf(v))
}
if rv.IsNil() {
return MetaData{}, e("Decode of nil %s", reflect.TypeOf(v))
}
p, err := parse(data)
if err != nil {
return MetaData{}, err
}
md := MetaData{
p.mapping, p.types, p.ordered,
make(map[string]bool, len(p.ordered)), nil,
}
return md, md.unify(p.mapping, indirect(rv))
}
// DecodeFile is just like Decode, except it will automatically read the
// contents of the file at `fpath` and decode it for you.
func DecodeFile(fpath string, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadFile(fpath)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// DecodeReader is just like Decode, except it will consume all bytes
// from the reader and decode it for you.
func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadAll(r)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// unify performs a sort of type unification based on the structure of `rv`,
// which is the client representation.
//
// Any type mismatch produces an error. Finding a type that we don't know
// how to handle produces an unsupported type error.
func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
// Special case. Look for a `Primitive` value.
if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
// Save the undecoded data and the key context into the primitive
// value.
context := make(Key, len(md.context))
copy(context, md.context)
rv.Set(reflect.ValueOf(Primitive{
undecoded: data,
context: context,
}))
return nil
}
// Special case. Unmarshaler Interface support.
if rv.CanAddr() {
if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
return v.UnmarshalTOML(data)
}
}
// Special case. Handle time.Time values specifically.
// TODO: Remove this code when we decide to drop support for Go 1.1.
// This isn't necessary in Go 1.2 because time.Time satisfies the encoding
// interfaces.
if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
return md.unifyDatetime(data, rv)
}
// Special case. Look for a value satisfying the TextUnmarshaler interface.
if v, ok := rv.Interface().(TextUnmarshaler); ok {
return md.unifyText(data, v)
}
// BUG(burntsushi)
// The behavior here is incorrect whenever a Go type satisfies the
// encoding.TextUnmarshaler interface but also corresponds to a TOML
// hash or array. In particular, the unmarshaler should only be applied
// to primitive TOML values. But at this point, it will be applied to
// all kinds of values and produce an incorrect error whenever those values
// are hashes or arrays (including arrays of tables).
k := rv.Kind()
// laziness
if k >= reflect.Int && k <= reflect.Uint64 {
return md.unifyInt(data, rv)
}
switch k {
case reflect.Ptr:
elem := reflect.New(rv.Type().Elem())
err := md.unify(data, reflect.Indirect(elem))
if err != nil {
return err
}
rv.Set(elem)
return nil
case reflect.Struct:
return md.unifyStruct(data, rv)
case reflect.Map:
return md.unifyMap(data, rv)
case reflect.Array:
return md.unifyArray(data, rv)
case reflect.Slice:
return md.unifySlice(data, rv)
case reflect.String:
return md.unifyString(data, rv)
case reflect.Bool:
return md.unifyBool(data, rv)
case reflect.Interface:
// we only support empty interfaces.
if rv.NumMethod() > 0 {
return e("unsupported type %s", rv.Type())
}
return md.unifyAnything(data, rv)
case reflect.Float32:
fallthrough
case reflect.Float64:
return md.unifyFloat64(data, rv)
}
return e("unsupported type %s", rv.Kind())
}
func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if mapping == nil {
return nil
}
return e("type mismatch for %s: expected table but found %T",
rv.Type().String(), mapping)
}
for key, datum := range tmap {
var f *field
fields := cachedTypeFields(rv.Type())
for i := range fields {
ff := &fields[i]
if ff.name == key {
f = ff
break
}
if f == nil && strings.EqualFold(ff.name, key) {
f = ff
}
}
if f != nil {
subv := rv
for _, i := range f.index {
subv = indirect(subv.Field(i))
}
if isUnifiable(subv) {
md.decoded[md.context.add(key).String()] = true
md.context = append(md.context, key)
if err := md.unify(datum, subv); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
} else if f.name != "" {
// Bad user! No soup for you!
return e("cannot write unexported field %s.%s",
rv.Type().String(), f.name)
}
}
}
return nil
}
func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if tmap == nil {
return nil
}
return badtype("map", mapping)
}
if rv.IsNil() {
rv.Set(reflect.MakeMap(rv.Type()))
}
for k, v := range tmap {
md.decoded[md.context.add(k).String()] = true
md.context = append(md.context, k)
rvkey := indirect(reflect.New(rv.Type().Key()))
rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
if err := md.unify(v, rvval); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
rvkey.SetString(k)
rv.SetMapIndex(rvkey, rvval)
}
return nil
}
func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
sliceLen := datav.Len()
if sliceLen != rv.Len() {
return e("expected array length %d; got TOML array of length %d",
rv.Len(), sliceLen)
}
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
n := datav.Len()
if rv.IsNil() || rv.Cap() < n {
rv.Set(reflect.MakeSlice(rv.Type(), n, n))
}
rv.SetLen(n)
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
sliceLen := data.Len()
for i := 0; i < sliceLen; i++ {
v := data.Index(i).Interface()
sliceval := indirect(rv.Index(i))
if err := md.unify(v, sliceval); err != nil {
return err
}
}
return nil
}
func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
if _, ok := data.(time.Time); ok {
rv.Set(reflect.ValueOf(data))
return nil
}
return badtype("time.Time", data)
}
func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
if s, ok := data.(string); ok {
rv.SetString(s)
return nil
}
return badtype("string", data)
}
func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
if num, ok := data.(float64); ok {
switch rv.Kind() {
case reflect.Float32:
fallthrough
case reflect.Float64:
rv.SetFloat(num)
default:
panic("bug")
}
return nil
}
return badtype("float", data)
}
func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
if num, ok := data.(int64); ok {
if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
switch rv.Kind() {
case reflect.Int, reflect.Int64:
// No bounds checking necessary.
case reflect.Int8:
if num < math.MinInt8 || num > math.MaxInt8 {
return e("value %d is out of range for int8", num)
}
case reflect.Int16:
if num < math.MinInt16 || num > math.MaxInt16 {
return e("value %d is out of range for int16", num)
}
case reflect.Int32:
if num < math.MinInt32 || num > math.MaxInt32 {
return e("value %d is out of range for int32", num)
}
}
rv.SetInt(num)
} else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
unum := uint64(num)
switch rv.Kind() {
case reflect.Uint, reflect.Uint64:
// No bounds checking necessary.
case reflect.Uint8:
if num < 0 || unum > math.MaxUint8 {
return e("value %d is out of range for uint8", num)
}
case reflect.Uint16:
if num < 0 || unum > math.MaxUint16 {
return e("value %d is out of range for uint16", num)
}
case reflect.Uint32:
if num < 0 || unum > math.MaxUint32 {
return e("value %d is out of range for uint32", num)
}
}
rv.SetUint(unum)
} else {
panic("unreachable")
}
return nil
}
return badtype("integer", data)
}
func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
if b, ok := data.(bool); ok {
rv.SetBool(b)
return nil
}
return badtype("boolean", data)
}
func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
rv.Set(reflect.ValueOf(data))
return nil
}
func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
var s string
switch sdata := data.(type) {
case TextMarshaler:
text, err := sdata.MarshalText()
if err != nil {
return err
}
s = string(text)
case fmt.Stringer:
s = sdata.String()
case string:
s = sdata
case bool:
s = fmt.Sprintf("%v", sdata)
case int64:
s = fmt.Sprintf("%d", sdata)
case float64:
s = fmt.Sprintf("%f", sdata)
default:
return badtype("primitive (string-like)", data)
}
if err := v.UnmarshalText([]byte(s)); err != nil {
return err
}
return nil
}
// rvalue returns a reflect.Value of `v`. All pointers are resolved.
func rvalue(v interface{}) reflect.Value {
return indirect(reflect.ValueOf(v))
}
// indirect returns the value pointed to by a pointer.
// Pointers are followed until the value is not a pointer.
// New values are allocated for each nil pointer.
//
// An exception to this rule is if the value satisfies an interface of
// interest to us (like encoding.TextUnmarshaler).
func indirect(v reflect.Value) reflect.Value {
if v.Kind() != reflect.Ptr {
if v.CanSet() {
pv := v.Addr()
if _, ok := pv.Interface().(TextUnmarshaler); ok {
return pv
}
}
return v
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
return indirect(reflect.Indirect(v))
}
func isUnifiable(rv reflect.Value) bool {
if rv.CanSet() {
return true
}
if _, ok := rv.Interface().(TextUnmarshaler); ok {
return true
}
return false
}
func badtype(expected string, data interface{}) error {
return e("cannot load TOML value of type %T into a Go %s", data, expected)
}

View File

@ -1,121 +0,0 @@
package toml
import "strings"
// MetaData allows access to meta information about TOML data that may not
// be inferrable via reflection. In particular, whether a key has been defined
// and the TOML type of a key.
type MetaData struct {
mapping map[string]interface{}
types map[string]tomlType
keys []Key
decoded map[string]bool
context Key // Used only during decoding.
}
// IsDefined returns true if the key given exists in the TOML data. The key
// should be specified hierarchially. e.g.,
//
// // access the TOML key 'a.b.c'
// IsDefined("a", "b", "c")
//
// IsDefined will return false if an empty key given. Keys are case sensitive.
func (md *MetaData) IsDefined(key ...string) bool {
if len(key) == 0 {
return false
}
var hash map[string]interface{}
var ok bool
var hashOrVal interface{} = md.mapping
for _, k := range key {
if hash, ok = hashOrVal.(map[string]interface{}); !ok {
return false
}
if hashOrVal, ok = hash[k]; !ok {
return false
}
}
return true
}
// Type returns a string representation of the type of the key specified.
//
// Type will return the empty string if given an empty key or a key that
// does not exist. Keys are case sensitive.
func (md *MetaData) Type(key ...string) string {
fullkey := strings.Join(key, ".")
if typ, ok := md.types[fullkey]; ok {
return typ.typeString()
}
return ""
}
// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
// to get values of this type.
type Key []string
func (k Key) String() string {
return strings.Join(k, ".")
}
func (k Key) maybeQuotedAll() string {
var ss []string
for i := range k {
ss = append(ss, k.maybeQuoted(i))
}
return strings.Join(ss, ".")
}
func (k Key) maybeQuoted(i int) string {
quote := false
for _, c := range k[i] {
if !isBareKeyChar(c) {
quote = true
break
}
}
if quote {
return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
}
return k[i]
}
func (k Key) add(piece string) Key {
newKey := make(Key, len(k)+1)
copy(newKey, k)
newKey[len(k)] = piece
return newKey
}
// Keys returns a slice of every key in the TOML data, including key groups.
// Each key is itself a slice, where the first element is the top of the
// hierarchy and the last is the most specific.
//
// The list will have the same order as the keys appeared in the TOML data.
//
// All keys returned are non-empty.
func (md *MetaData) Keys() []Key {
return md.keys
}
// Undecoded returns all keys that have not been decoded in the order in which
// they appear in the original TOML document.
//
// This includes keys that haven't been decoded because of a Primitive value.
// Once the Primitive value is decoded, the keys will be considered decoded.
//
// Also note that decoding into an empty interface will result in no decoding,
// and so no keys will be considered decoded.
//
// In this sense, the Undecoded keys correspond to keys in the TOML document
// that do not have a concrete type in your representation.
func (md *MetaData) Undecoded() []Key {
undecoded := make([]Key, 0, len(md.keys))
for _, key := range md.keys {
if !md.decoded[key.String()] {
undecoded = append(undecoded, key)
}
}
return undecoded
}

View File

@ -1,27 +0,0 @@
/*
Package toml provides facilities for decoding and encoding TOML configuration
files via reflection. There is also support for delaying decoding with
the Primitive type, and querying the set of keys in a TOML document with the
MetaData type.
The specification implemented: https://github.com/toml-lang/toml
The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
whether a file is a valid TOML document. It can also be used to print the
type of each key in a TOML document.
Testing
There are two important types of tests used for this package. The first is
contained inside '*_test.go' files and uses the standard Go unit testing
framework. These tests are primarily devoted to holistically testing the
decoder and encoder.
The second type of testing is used to verify the implementation's adherence
to the TOML specification. These tests have been factored into their own
project: https://github.com/BurntSushi/toml-test
The reason the tests are in a separate project is so that they can be used by
any implementation of TOML. Namely, it is language agnostic.
*/
package toml

View File

@ -1,568 +0,0 @@
package toml
import (
"bufio"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"strings"
"time"
)
type tomlEncodeError struct{ error }
var (
errArrayMixedElementTypes = errors.New(
"toml: cannot encode array with mixed element types")
errArrayNilElement = errors.New(
"toml: cannot encode array with nil element")
errNonString = errors.New(
"toml: cannot encode a map with non-string key type")
errAnonNonStruct = errors.New(
"toml: cannot encode an anonymous field that is not a struct")
errArrayNoTable = errors.New(
"toml: TOML array element cannot contain a table")
errNoKey = errors.New(
"toml: top-level values must be Go maps or structs")
errAnything = errors.New("") // used in testing
)
var quotedReplacer = strings.NewReplacer(
"\t", "\\t",
"\n", "\\n",
"\r", "\\r",
"\"", "\\\"",
"\\", "\\\\",
)
// Encoder controls the encoding of Go values to a TOML document to some
// io.Writer.
//
// The indentation level can be controlled with the Indent field.
type Encoder struct {
// A single indentation level. By default it is two spaces.
Indent string
// hasWritten is whether we have written any output to w yet.
hasWritten bool
w *bufio.Writer
}
// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
// given. By default, a single indentation level is 2 spaces.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
w: bufio.NewWriter(w),
Indent: " ",
}
}
// Encode writes a TOML representation of the Go value to the underlying
// io.Writer. If the value given cannot be encoded to a valid TOML document,
// then an error is returned.
//
// The mapping between Go values and TOML values should be precisely the same
// as for the Decode* functions. Similarly, the TextMarshaler interface is
// supported by encoding the resulting bytes as strings. (If you want to write
// arbitrary binary data then you will need to use something like base64 since
// TOML does not have any binary types.)
//
// When encoding TOML hashes (i.e., Go maps or structs), keys without any
// sub-hashes are encoded first.
//
// If a Go map is encoded, then its keys are sorted alphabetically for
// deterministic output. More control over this behavior may be provided if
// there is demand for it.
//
// Encoding Go values without a corresponding TOML representation---like map
// types with non-string keys---will cause an error to be returned. Similarly
// for mixed arrays/slices, arrays/slices with nil elements, embedded
// non-struct types and nested slices containing maps or structs.
// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
// and so is []map[string][]string.)
func (enc *Encoder) Encode(v interface{}) error {
rv := eindirect(reflect.ValueOf(v))
if err := enc.safeEncode(Key([]string{}), rv); err != nil {
return err
}
return enc.w.Flush()
}
func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
defer func() {
if r := recover(); r != nil {
if terr, ok := r.(tomlEncodeError); ok {
err = terr.error
return
}
panic(r)
}
}()
enc.encode(key, rv)
return nil
}
func (enc *Encoder) encode(key Key, rv reflect.Value) {
// Special case. Time needs to be in ISO8601 format.
// Special case. If we can marshal the type to text, then we used that.
// Basically, this prevents the encoder for handling these types as
// generic structs (or whatever the underlying type of a TextMarshaler is).
switch rv.Interface().(type) {
case time.Time, TextMarshaler:
enc.keyEqElement(key, rv)
return
}
k := rv.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64,
reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
enc.keyEqElement(key, rv)
case reflect.Array, reflect.Slice:
if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
enc.eArrayOfTables(key, rv)
} else {
enc.keyEqElement(key, rv)
}
case reflect.Interface:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Map:
if rv.IsNil() {
return
}
enc.eTable(key, rv)
case reflect.Ptr:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Struct:
enc.eTable(key, rv)
default:
panic(e("unsupported type for key '%s': %s", key, k))
}
}
// eElement encodes any value that can be an array element (primitives and
// arrays).
func (enc *Encoder) eElement(rv reflect.Value) {
switch v := rv.Interface().(type) {
case time.Time:
// Special case time.Time as a primitive. Has to come before
// TextMarshaler below because time.Time implements
// encoding.TextMarshaler, but we need to always use UTC.
enc.wf(v.UTC().Format("2006-01-02T15:04:05Z"))
return
case TextMarshaler:
// Special case. Use text marshaler if it's available for this value.
if s, err := v.MarshalText(); err != nil {
encPanic(err)
} else {
enc.writeQuoted(string(s))
}
return
}
switch rv.Kind() {
case reflect.Bool:
enc.wf(strconv.FormatBool(rv.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64:
enc.wf(strconv.FormatInt(rv.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64:
enc.wf(strconv.FormatUint(rv.Uint(), 10))
case reflect.Float32:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
case reflect.Float64:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
case reflect.Array, reflect.Slice:
enc.eArrayOrSliceElement(rv)
case reflect.Interface:
enc.eElement(rv.Elem())
case reflect.String:
enc.writeQuoted(rv.String())
default:
panic(e("unexpected primitive type: %s", rv.Kind()))
}
}
// By the TOML spec, all floats must have a decimal with at least one
// number on either side.
func floatAddDecimal(fstr string) string {
if !strings.Contains(fstr, ".") {
return fstr + ".0"
}
return fstr
}
func (enc *Encoder) writeQuoted(s string) {
enc.wf("\"%s\"", quotedReplacer.Replace(s))
}
func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
length := rv.Len()
enc.wf("[")
for i := 0; i < length; i++ {
elem := rv.Index(i)
enc.eElement(elem)
if i != length-1 {
enc.wf(", ")
}
}
enc.wf("]")
}
func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
for i := 0; i < rv.Len(); i++ {
trv := rv.Index(i)
if isNil(trv) {
continue
}
panicIfInvalidKey(key)
enc.newline()
enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
enc.eMapOrStruct(key, trv)
}
}
func (enc *Encoder) eTable(key Key, rv reflect.Value) {
panicIfInvalidKey(key)
if len(key) == 1 {
// Output an extra newline between top-level tables.
// (The newline isn't written if nothing else has been written though.)
enc.newline()
}
if len(key) > 0 {
enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
}
enc.eMapOrStruct(key, rv)
}
func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
switch rv := eindirect(rv); rv.Kind() {
case reflect.Map:
enc.eMap(key, rv)
case reflect.Struct:
enc.eStruct(key, rv)
default:
panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
}
}
func (enc *Encoder) eMap(key Key, rv reflect.Value) {
rt := rv.Type()
if rt.Key().Kind() != reflect.String {
encPanic(errNonString)
}
// Sort keys so that we have deterministic output. And write keys directly
// underneath this key first, before writing sub-structs or sub-maps.
var mapKeysDirect, mapKeysSub []string
for _, mapKey := range rv.MapKeys() {
k := mapKey.String()
if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
mapKeysSub = append(mapKeysSub, k)
} else {
mapKeysDirect = append(mapKeysDirect, k)
}
}
var writeMapKeys = func(mapKeys []string) {
sort.Strings(mapKeys)
for _, mapKey := range mapKeys {
mrv := rv.MapIndex(reflect.ValueOf(mapKey))
if isNil(mrv) {
// Don't write anything for nil fields.
continue
}
enc.encode(key.add(mapKey), mrv)
}
}
writeMapKeys(mapKeysDirect)
writeMapKeys(mapKeysSub)
}
func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
// Write keys for fields directly under this key first, because if we write
// a field that creates a new table, then all keys under it will be in that
// table (not the one we're writing here).
rt := rv.Type()
var fieldsDirect, fieldsSub [][]int
var addFields func(rt reflect.Type, rv reflect.Value, start []int)
addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
for i := 0; i < rt.NumField(); i++ {
f := rt.Field(i)
// skip unexported fields
if f.PkgPath != "" && !f.Anonymous {
continue
}
frv := rv.Field(i)
if f.Anonymous {
t := f.Type
switch t.Kind() {
case reflect.Struct:
// Treat anonymous struct fields with
// tag names as though they are not
// anonymous, like encoding/json does.
if getOptions(f.Tag).name == "" {
addFields(t, frv, f.Index)
continue
}
case reflect.Ptr:
if t.Elem().Kind() == reflect.Struct &&
getOptions(f.Tag).name == "" {
if !frv.IsNil() {
addFields(t.Elem(), frv.Elem(), f.Index)
}
continue
}
// Fall through to the normal field encoding logic below
// for non-struct anonymous fields.
}
}
if typeIsHash(tomlTypeOfGo(frv)) {
fieldsSub = append(fieldsSub, append(start, f.Index...))
} else {
fieldsDirect = append(fieldsDirect, append(start, f.Index...))
}
}
}
addFields(rt, rv, nil)
var writeFields = func(fields [][]int) {
for _, fieldIndex := range fields {
sft := rt.FieldByIndex(fieldIndex)
sf := rv.FieldByIndex(fieldIndex)
if isNil(sf) {
// Don't write anything for nil fields.
continue
}
opts := getOptions(sft.Tag)
if opts.skip {
continue
}
keyName := sft.Name
if opts.name != "" {
keyName = opts.name
}
if opts.omitempty && isEmpty(sf) {
continue
}
if opts.omitzero && isZero(sf) {
continue
}
enc.encode(key.add(keyName), sf)
}
}
writeFields(fieldsDirect)
writeFields(fieldsSub)
}
// tomlTypeName returns the TOML type name of the Go value's type. It is
// used to determine whether the types of array elements are mixed (which is
// forbidden). If the Go value is nil, then it is illegal for it to be an array
// element, and valueIsNil is returned as true.
// Returns the TOML type of a Go value. The type may be `nil`, which means
// no concrete TOML type could be found.
func tomlTypeOfGo(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() {
return nil
}
switch rv.Kind() {
case reflect.Bool:
return tomlBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64:
return tomlInteger
case reflect.Float32, reflect.Float64:
return tomlFloat
case reflect.Array, reflect.Slice:
if typeEqual(tomlHash, tomlArrayType(rv)) {
return tomlArrayHash
}
return tomlArray
case reflect.Ptr, reflect.Interface:
return tomlTypeOfGo(rv.Elem())
case reflect.String:
return tomlString
case reflect.Map:
return tomlHash
case reflect.Struct:
switch rv.Interface().(type) {
case time.Time:
return tomlDatetime
case TextMarshaler:
return tomlString
default:
return tomlHash
}
default:
panic("unexpected reflect.Kind: " + rv.Kind().String())
}
}
// tomlArrayType returns the element type of a TOML array. The type returned
// may be nil if it cannot be determined (e.g., a nil slice or a zero length
// slize). This function may also panic if it finds a type that cannot be
// expressed in TOML (such as nil elements, heterogeneous arrays or directly
// nested arrays of tables).
func tomlArrayType(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
return nil
}
firstType := tomlTypeOfGo(rv.Index(0))
if firstType == nil {
encPanic(errArrayNilElement)
}
rvlen := rv.Len()
for i := 1; i < rvlen; i++ {
elem := rv.Index(i)
switch elemType := tomlTypeOfGo(elem); {
case elemType == nil:
encPanic(errArrayNilElement)
case !typeEqual(firstType, elemType):
encPanic(errArrayMixedElementTypes)
}
}
// If we have a nested array, then we must make sure that the nested
// array contains ONLY primitives.
// This checks arbitrarily nested arrays.
if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
nest := tomlArrayType(eindirect(rv.Index(0)))
if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
encPanic(errArrayNoTable)
}
}
return firstType
}
type tagOptions struct {
skip bool // "-"
name string
omitempty bool
omitzero bool
}
func getOptions(tag reflect.StructTag) tagOptions {
t := tag.Get("toml")
if t == "-" {
return tagOptions{skip: true}
}
var opts tagOptions
parts := strings.Split(t, ",")
opts.name = parts[0]
for _, s := range parts[1:] {
switch s {
case "omitempty":
opts.omitempty = true
case "omitzero":
opts.omitzero = true
}
}
return opts
}
func isZero(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return rv.Uint() == 0
case reflect.Float32, reflect.Float64:
return rv.Float() == 0.0
}
return false
}
func isEmpty(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
return rv.Len() == 0
case reflect.Bool:
return !rv.Bool()
}
return false
}
func (enc *Encoder) newline() {
if enc.hasWritten {
enc.wf("\n")
}
}
func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
panicIfInvalidKey(key)
enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
enc.eElement(val)
enc.newline()
}
func (enc *Encoder) wf(format string, v ...interface{}) {
if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
encPanic(err)
}
enc.hasWritten = true
}
func (enc *Encoder) indentStr(key Key) string {
return strings.Repeat(enc.Indent, len(key)-1)
}
func encPanic(err error) {
panic(tomlEncodeError{err})
}
func eindirect(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr, reflect.Interface:
return eindirect(v.Elem())
default:
return v
}
}
func isNil(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return rv.IsNil()
default:
return false
}
}
func panicIfInvalidKey(key Key) {
for _, k := range key {
if len(k) == 0 {
encPanic(e("Key '%s' is not a valid table name. Key names "+
"cannot be empty.", key.maybeQuotedAll()))
}
}
}
func isValidKeyName(s string) bool {
return len(s) != 0
}

View File

@ -1,19 +0,0 @@
// +build go1.2
package toml
// In order to support Go 1.1, we define our own TextMarshaler and
// TextUnmarshaler types. For Go 1.2+, we just alias them with the
// standard library interfaces.
import (
"encoding"
)
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler encoding.TextMarshaler
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler encoding.TextUnmarshaler

View File

@ -1,18 +0,0 @@
// +build !go1.2
package toml
// These interfaces were introduced in Go 1.2, so we add them manually when
// compiling for Go 1.1.
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler interface {
MarshalText() (text []byte, err error)
}
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

View File

@ -1,953 +0,0 @@
package toml
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
)
type itemType int
const (
itemError itemType = iota
itemNIL // used in the parser to indicate no type
itemEOF
itemText
itemString
itemRawString
itemMultilineString
itemRawMultilineString
itemBool
itemInteger
itemFloat
itemDatetime
itemArray // the start of an array
itemArrayEnd
itemTableStart
itemTableEnd
itemArrayTableStart
itemArrayTableEnd
itemKeyStart
itemCommentStart
itemInlineTableStart
itemInlineTableEnd
)
const (
eof = 0
comma = ','
tableStart = '['
tableEnd = ']'
arrayTableStart = '['
arrayTableEnd = ']'
tableSep = '.'
keySep = '='
arrayStart = '['
arrayEnd = ']'
commentStart = '#'
stringStart = '"'
stringEnd = '"'
rawStringStart = '\''
rawStringEnd = '\''
inlineTableStart = '{'
inlineTableEnd = '}'
)
type stateFn func(lx *lexer) stateFn
type lexer struct {
input string
start int
pos int
line int
state stateFn
items chan item
// Allow for backing up up to three runes.
// This is necessary because TOML contains 3-rune tokens (""" and ''').
prevWidths [3]int
nprev int // how many of prevWidths are in use
// If we emit an eof, we can still back up, but it is not OK to call
// next again.
atEOF bool
// A stack of state functions used to maintain context.
// The idea is to reuse parts of the state machine in various places.
// For example, values can appear at the top level or within arbitrarily
// nested arrays. The last state on the stack is used after a value has
// been lexed. Similarly for comments.
stack []stateFn
}
type item struct {
typ itemType
val string
line int
}
func (lx *lexer) nextItem() item {
for {
select {
case item := <-lx.items:
return item
default:
lx.state = lx.state(lx)
}
}
}
func lex(input string) *lexer {
lx := &lexer{
input: input,
state: lexTop,
line: 1,
items: make(chan item, 10),
stack: make([]stateFn, 0, 10),
}
return lx
}
func (lx *lexer) push(state stateFn) {
lx.stack = append(lx.stack, state)
}
func (lx *lexer) pop() stateFn {
if len(lx.stack) == 0 {
return lx.errorf("BUG in lexer: no states to pop")
}
last := lx.stack[len(lx.stack)-1]
lx.stack = lx.stack[0 : len(lx.stack)-1]
return last
}
func (lx *lexer) current() string {
return lx.input[lx.start:lx.pos]
}
func (lx *lexer) emit(typ itemType) {
lx.items <- item{typ, lx.current(), lx.line}
lx.start = lx.pos
}
func (lx *lexer) emitTrim(typ itemType) {
lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
lx.start = lx.pos
}
func (lx *lexer) next() (r rune) {
if lx.atEOF {
panic("next called after EOF")
}
if lx.pos >= len(lx.input) {
lx.atEOF = true
return eof
}
if lx.input[lx.pos] == '\n' {
lx.line++
}
lx.prevWidths[2] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[0]
if lx.nprev < 3 {
lx.nprev++
}
r, w := utf8.DecodeRuneInString(lx.input[lx.pos:])
lx.prevWidths[0] = w
lx.pos += w
return r
}
// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
lx.start = lx.pos
}
// backup steps back one rune. Can be called only twice between calls to next.
func (lx *lexer) backup() {
if lx.atEOF {
lx.atEOF = false
return
}
if lx.nprev < 1 {
panic("backed up too far")
}
w := lx.prevWidths[0]
lx.prevWidths[0] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[2]
lx.nprev--
lx.pos -= w
if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
lx.line--
}
}
// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
if lx.next() == valid {
return true
}
lx.backup()
return false
}
// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
r := lx.next()
lx.backup()
return r
}
// skip ignores all input that matches the given predicate.
func (lx *lexer) skip(pred func(rune) bool) {
for {
r := lx.next()
if pred(r) {
continue
}
lx.backup()
lx.ignore()
return
}
}
// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (newlines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
lx.items <- item{
itemError,
fmt.Sprintf(format, values...),
lx.line,
}
return nil
}
// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
r := lx.next()
if isWhitespace(r) || isNL(r) {
return lexSkip(lx, lexTop)
}
switch r {
case commentStart:
lx.push(lexTop)
return lexCommentStart
case tableStart:
return lexTableStart
case eof:
if lx.pos > lx.start {
return lx.errorf("unexpected EOF")
}
lx.emit(itemEOF)
return nil
}
// At this point, the only valid item can be a key, so we back up
// and let the key lexer do the rest.
lx.backup()
lx.push(lexTopEnd)
return lexKeyStart
}
// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a newline. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case r == commentStart:
// a comment will read to a newline for us.
lx.push(lexTop)
return lexCommentStart
case isWhitespace(r):
return lexTopEnd
case isNL(r):
lx.ignore()
return lexTop
case r == eof:
lx.emit(itemEOF)
return nil
}
return lx.errorf("expected a top-level item to end with a newline, "+
"comment, or EOF, but got %q instead", r)
}
// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
if lx.peek() == arrayTableStart {
lx.next()
lx.emit(itemArrayTableStart)
lx.push(lexArrayTableEnd)
} else {
lx.emit(itemTableStart)
lx.push(lexTableEnd)
}
return lexTableNameStart
}
func lexTableEnd(lx *lexer) stateFn {
lx.emit(itemTableEnd)
return lexTopEnd
}
func lexArrayTableEnd(lx *lexer) stateFn {
if r := lx.next(); r != arrayTableEnd {
return lx.errorf("expected end of table array name delimiter %q, "+
"but got %q instead", arrayTableEnd, r)
}
lx.emit(itemArrayTableEnd)
return lexTopEnd
}
func lexTableNameStart(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.peek(); {
case r == tableEnd || r == eof:
return lx.errorf("unexpected end of table name " +
"(table names cannot be empty)")
case r == tableSep:
return lx.errorf("unexpected table separator " +
"(table names cannot be empty)")
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.push(lexTableNameEnd)
return lexValue // reuse string lexing
default:
return lexBareTableName
}
}
// lexBareTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
r := lx.next()
if isBareKeyChar(r) {
return lexBareTableName
}
lx.backup()
lx.emit(itemText)
return lexTableNameEnd
}
// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.next(); {
case isWhitespace(r):
return lexTableNameEnd
case r == tableSep:
lx.ignore()
return lexTableNameStart
case r == tableEnd:
return lx.pop()
default:
return lx.errorf("expected '.' or ']' to end table name, "+
"but got %q instead", r)
}
}
// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
r := lx.peek()
switch {
case r == keySep:
return lx.errorf("unexpected key separator %q", keySep)
case isWhitespace(r) || isNL(r):
lx.next()
return lexSkip(lx, lexKeyStart)
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.emit(itemKeyStart)
lx.push(lexKeyEnd)
return lexValue // reuse string lexing
default:
lx.ignore()
lx.emit(itemKeyStart)
return lexBareKey
}
}
// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareKey
case isWhitespace(r):
lx.backup()
lx.emit(itemText)
return lexKeyEnd
case r == keySep:
lx.backup()
lx.emit(itemText)
return lexKeyEnd
default:
return lx.errorf("bare keys cannot contain %q", r)
}
}
// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case r == keySep:
return lexSkip(lx, lexValue)
case isWhitespace(r):
return lexSkip(lx, lexKeyEnd)
default:
return lx.errorf("expected key separator %q, but got %q instead",
keySep, r)
}
}
// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
// We allow whitespace to precede a value, but NOT newlines.
// In array syntax, the array states are responsible for ignoring newlines.
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexValue)
case isDigit(r):
lx.backup() // avoid an extra state and use the same as above
return lexNumberOrDateStart
}
switch r {
case arrayStart:
lx.ignore()
lx.emit(itemArray)
return lexArrayValue
case inlineTableStart:
lx.ignore()
lx.emit(itemInlineTableStart)
return lexInlineTableValue
case stringStart:
if lx.accept(stringStart) {
if lx.accept(stringStart) {
lx.ignore() // Ignore """
return lexMultilineString
}
lx.backup()
}
lx.ignore() // ignore the '"'
return lexString
case rawStringStart:
if lx.accept(rawStringStart) {
if lx.accept(rawStringStart) {
lx.ignore() // Ignore """
return lexMultilineRawString
}
lx.backup()
}
lx.ignore() // ignore the "'"
return lexRawString
case '+', '-':
return lexNumberStart
case '.': // special error case, be kind to users
return lx.errorf("floats must start with a digit, not '.'")
}
if unicode.IsLetter(r) {
// Be permissive here; lexBool will give a nice error if the
// user wrote something like
// x = foo
// (i.e. not 'true' or 'false' but is something else word-like.)
lx.backup()
return lexBool
}
return lx.errorf("expected value but found %q instead", r)
}
// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and newlines are ignored.
func lexArrayValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValue)
case r == commentStart:
lx.push(lexArrayValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == arrayEnd:
// NOTE(caleb): The spec isn't clear about whether you can have
// a trailing comma or not, so we'll allow it.
return lexArrayEnd
}
lx.backup()
lx.push(lexArrayValueEnd)
return lexValue
}
// lexArrayValueEnd consumes everything between the end of an array value and
// the next value (or the end of the array): it ignores whitespace and newlines
// and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValueEnd)
case r == commentStart:
lx.push(lexArrayValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexArrayValue // move on to the next value
case r == arrayEnd:
return lexArrayEnd
}
return lx.errorf(
"expected a comma or array terminator %q, but got %q instead",
arrayEnd, r,
)
}
// lexArrayEnd finishes the lexing of an array.
// It assumes that a ']' has just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemArrayEnd)
return lx.pop()
}
// lexInlineTableValue consumes one key/value pair in an inline table.
// It assumes that '{' or ',' have already been consumed. Whitespace is ignored.
func lexInlineTableValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValue)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == inlineTableEnd:
return lexInlineTableEnd
}
lx.backup()
lx.push(lexInlineTableValueEnd)
return lexKeyStart
}
// lexInlineTableValueEnd consumes everything between the end of an inline table
// key/value pair and the next pair (or the end of the table):
// it ignores whitespace and expects either a ',' or a '}'.
func lexInlineTableValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValueEnd)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexInlineTableValue
case r == inlineTableEnd:
return lexInlineTableEnd
}
return lx.errorf("expected a comma or an inline table terminator %q, "+
"but got %q instead", inlineTableEnd, r)
}
// lexInlineTableEnd finishes the lexing of an inline table.
// It assumes that a '}' has just been consumed.
func lexInlineTableEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemInlineTableEnd)
return lx.pop()
}
// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == '\\':
lx.push(lexString)
return lexStringEscape
case r == stringEnd:
lx.backup()
lx.emit(itemString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexString
}
// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case '\\':
return lexMultilineStringEscape
case stringEnd:
if lx.accept(stringEnd) {
if lx.accept(stringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineString
}
// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == rawStringEnd:
lx.backup()
lx.emit(itemRawString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexRawString
}
// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'''" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case rawStringEnd:
if lx.accept(rawStringEnd) {
if lx.accept(rawStringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemRawMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineRawString
}
// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
// Handle the special case first:
if isNL(lx.next()) {
return lexMultilineString
}
lx.backup()
lx.push(lexMultilineString)
return lexStringEscape(lx)
}
func lexStringEscape(lx *lexer) stateFn {
r := lx.next()
switch r {
case 'b':
fallthrough
case 't':
fallthrough
case 'n':
fallthrough
case 'f':
fallthrough
case 'r':
fallthrough
case '"':
fallthrough
case '\\':
return lx.pop()
case 'u':
return lexShortUnicodeEscape
case 'U':
return lexLongUnicodeEscape
}
return lx.errorf("invalid escape character %q; only the following "+
"escape characters are allowed: "+
`\b, \t, \n, \f, \r, \", \\, \uXXXX, and \UXXXXXXXX`, r)
}
func lexShortUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 4; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected four hexadecimal digits after '\u', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
func lexLongUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 8; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected eight hexadecimal digits after '\U', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
// lexNumberOrDateStart consumes either an integer, a float, or datetime.
func lexNumberOrDateStart(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '_':
return lexNumber
case 'e', 'E':
return lexFloat
case '.':
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
// lexNumberOrDate consumes either an integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '-':
return lexDatetime
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexDatetime consumes a Datetime, to a first approximation.
// The parser validates that it matches one of the accepted formats.
func lexDatetime(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexDatetime
}
switch r {
case '-', 'T', ':', '.', 'Z', '+':
return lexDatetime
}
lx.backup()
lx.emit(itemDatetime)
return lx.pop()
}
// lexNumberStart consumes either an integer or a float. It assumes that a sign
// has already been read, but that *no* digits have been consumed.
// lexNumberStart will move to the appropriate integer or float states.
func lexNumberStart(lx *lexer) stateFn {
// We MUST see a digit. Even floats have to start with a digit.
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
return lexNumber
}
// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumber
}
switch r {
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexFloat consumes the elements of a float. It allows any sequence of
// float-like characters, so floats emitted by the lexer are only a first
// approximation and must be validated by the parser.
func lexFloat(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexFloat
}
switch r {
case '_', '.', '-', '+', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemFloat)
return lx.pop()
}
// lexBool consumes a bool string: 'true' or 'false.
func lexBool(lx *lexer) stateFn {
var rs []rune
for {
r := lx.next()
if !unicode.IsLetter(r) {
lx.backup()
break
}
rs = append(rs, r)
}
s := string(rs)
switch s {
case "true", "false":
lx.emit(itemBool)
return lx.pop()
}
return lx.errorf("expected value but found %q instead", s)
}
// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemCommentStart)
return lexComment
}
// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first newline character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
r := lx.peek()
if isNL(r) || r == eof {
lx.emit(itemText)
return lx.pop()
}
lx.next()
return lexComment
}
// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
return func(lx *lexer) stateFn {
lx.ignore()
return nextState
}
}
// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
return r == '\t' || r == ' '
}
func isNL(r rune) bool {
return r == '\n' || r == '\r'
}
func isDigit(r rune) bool {
return r >= '0' && r <= '9'
}
func isHexadecimal(r rune) bool {
return (r >= '0' && r <= '9') ||
(r >= 'a' && r <= 'f') ||
(r >= 'A' && r <= 'F')
}
func isBareKeyChar(r rune) bool {
return (r >= 'A' && r <= 'Z') ||
(r >= 'a' && r <= 'z') ||
(r >= '0' && r <= '9') ||
r == '_' ||
r == '-'
}
func (itype itemType) String() string {
switch itype {
case itemError:
return "Error"
case itemNIL:
return "NIL"
case itemEOF:
return "EOF"
case itemText:
return "Text"
case itemString, itemRawString, itemMultilineString, itemRawMultilineString:
return "String"
case itemBool:
return "Bool"
case itemInteger:
return "Integer"
case itemFloat:
return "Float"
case itemDatetime:
return "DateTime"
case itemTableStart:
return "TableStart"
case itemTableEnd:
return "TableEnd"
case itemKeyStart:
return "KeyStart"
case itemArray:
return "Array"
case itemArrayEnd:
return "ArrayEnd"
case itemCommentStart:
return "CommentStart"
}
panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}
func (item item) String() string {
return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}

View File

@ -1,592 +0,0 @@
package toml
import (
"fmt"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
)
type parser struct {
mapping map[string]interface{}
types map[string]tomlType
lx *lexer
// A list of keys in the order that they appear in the TOML data.
ordered []Key
// the full key for the current hash in scope
context Key
// the base key name for everything except hashes
currentKey string
// rough approximation of line number
approxLine int
// A map of 'key.group.names' to whether they were created implicitly.
implicits map[string]bool
}
type parseError string
func (pe parseError) Error() string {
return string(pe)
}
func parse(data string) (p *parser, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
if err, ok = r.(parseError); ok {
return
}
panic(r)
}
}()
p = &parser{
mapping: make(map[string]interface{}),
types: make(map[string]tomlType),
lx: lex(data),
ordered: make([]Key, 0),
implicits: make(map[string]bool),
}
for {
item := p.next()
if item.typ == itemEOF {
break
}
p.topLevel(item)
}
return p, nil
}
func (p *parser) panicf(format string, v ...interface{}) {
msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
p.approxLine, p.current(), fmt.Sprintf(format, v...))
panic(parseError(msg))
}
func (p *parser) next() item {
it := p.lx.nextItem()
if it.typ == itemError {
p.panicf("%s", it.val)
}
return it
}
func (p *parser) bug(format string, v ...interface{}) {
panic(fmt.Sprintf("BUG: "+format+"\n\n", v...))
}
func (p *parser) expect(typ itemType) item {
it := p.next()
p.assertEqual(typ, it.typ)
return it
}
func (p *parser) assertEqual(expected, got itemType) {
if expected != got {
p.bug("Expected '%s' but got '%s'.", expected, got)
}
}
func (p *parser) topLevel(item item) {
switch item.typ {
case itemCommentStart:
p.approxLine = item.line
p.expect(itemText)
case itemTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemTableEnd, kg.typ)
p.establishContext(key, false)
p.setType("", tomlHash)
p.ordered = append(p.ordered, key)
case itemArrayTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemArrayTableEnd, kg.typ)
p.establishContext(key, true)
p.setType("", tomlArrayHash)
p.ordered = append(p.ordered, key)
case itemKeyStart:
kname := p.next()
p.approxLine = kname.line
p.currentKey = p.keyString(kname)
val, typ := p.value(p.next())
p.setValue(p.currentKey, val)
p.setType(p.currentKey, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
p.currentKey = ""
default:
p.bug("Unexpected type at top level: %s", item.typ)
}
}
// Gets a string for a key (or part of a key in a table name).
func (p *parser) keyString(it item) string {
switch it.typ {
case itemText:
return it.val
case itemString, itemMultilineString,
itemRawString, itemRawMultilineString:
s, _ := p.value(it)
return s.(string)
default:
p.bug("Unexpected key type: %s", it.typ)
panic("unreachable")
}
}
// value translates an expected value from the lexer into a Go value wrapped
// as an empty interface.
func (p *parser) value(it item) (interface{}, tomlType) {
switch it.typ {
case itemString:
return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
case itemMultilineString:
trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
case itemRawString:
return it.val, p.typeOfPrimitive(it)
case itemRawMultilineString:
return stripFirstNewline(it.val), p.typeOfPrimitive(it)
case itemBool:
switch it.val {
case "true":
return true, p.typeOfPrimitive(it)
case "false":
return false, p.typeOfPrimitive(it)
}
p.bug("Expected boolean value, but got '%s'.", it.val)
case itemInteger:
if !numUnderscoresOK(it.val) {
p.panicf("Invalid integer %q: underscores must be surrounded by digits",
it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseInt(val, 10, 64)
if err != nil {
// Distinguish integer values. Normally, it'd be a bug if the lexer
// provides an invalid integer, but it's possible that the number is
// out of range of valid values (which the lexer cannot determine).
// So mark the former as a bug but the latter as a legitimate user
// error.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Integer '%s' is out of the range of 64-bit "+
"signed integers.", it.val)
} else {
p.bug("Expected integer value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemFloat:
parts := strings.FieldsFunc(it.val, func(r rune) bool {
switch r {
case '.', 'e', 'E':
return true
}
return false
})
for _, part := range parts {
if !numUnderscoresOK(part) {
p.panicf("Invalid float %q: underscores must be "+
"surrounded by digits", it.val)
}
}
if !numPeriodsOK(it.val) {
// As a special case, numbers like '123.' or '1.e2',
// which are valid as far as Go/strconv are concerned,
// must be rejected because TOML says that a fractional
// part consists of '.' followed by 1+ digits.
p.panicf("Invalid float %q: '.' must be followed "+
"by one or more digits", it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseFloat(val, 64)
if err != nil {
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Float '%s' is out of the range of 64-bit "+
"IEEE-754 floating-point numbers.", it.val)
} else {
p.panicf("Invalid float value: %q", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemDatetime:
var t time.Time
var ok bool
var err error
for _, format := range []string{
"2006-01-02T15:04:05Z07:00",
"2006-01-02T15:04:05",
"2006-01-02",
} {
t, err = time.ParseInLocation(format, it.val, time.Local)
if err == nil {
ok = true
break
}
}
if !ok {
p.panicf("Invalid TOML Datetime: %q.", it.val)
}
return t, p.typeOfPrimitive(it)
case itemArray:
array := make([]interface{}, 0)
types := make([]tomlType, 0)
for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
val, typ := p.value(it)
array = append(array, val)
types = append(types, typ)
}
return array, p.typeOfArray(types)
case itemInlineTableStart:
var (
hash = make(map[string]interface{})
outerContext = p.context
outerKey = p.currentKey
)
p.context = append(p.context, p.currentKey)
p.currentKey = ""
for it := p.next(); it.typ != itemInlineTableEnd; it = p.next() {
if it.typ != itemKeyStart {
p.bug("Expected key start but instead found %q, around line %d",
it.val, p.approxLine)
}
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
// retrieve key
k := p.next()
p.approxLine = k.line
kname := p.keyString(k)
// retrieve value
p.currentKey = kname
val, typ := p.value(p.next())
// make sure we keep metadata up to date
p.setType(kname, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
hash[kname] = val
}
p.context = outerContext
p.currentKey = outerKey
return hash, tomlHash
}
p.bug("Unexpected value type: %s", it.typ)
panic("unreachable")
}
// numUnderscoresOK checks whether each underscore in s is surrounded by
// characters that are not underscores.
func numUnderscoresOK(s string) bool {
accept := false
for _, r := range s {
if r == '_' {
if !accept {
return false
}
accept = false
continue
}
accept = true
}
return accept
}
// numPeriodsOK checks whether every period in s is followed by a digit.
func numPeriodsOK(s string) bool {
period := false
for _, r := range s {
if period && !isDigit(r) {
return false
}
period = r == '.'
}
return !period
}
// establishContext sets the current context of the parser,
// where the context is either a hash or an array of hashes. Which one is
// set depends on the value of the `array` parameter.
//
// Establishing the context also makes sure that the key isn't a duplicate, and
// will create implicit hashes automatically.
func (p *parser) establishContext(key Key, array bool) {
var ok bool
// Always start at the top level and drill down for our context.
hashContext := p.mapping
keyContext := make(Key, 0)
// We only need implicit hashes for key[0:-1]
for _, k := range key[0 : len(key)-1] {
_, ok = hashContext[k]
keyContext = append(keyContext, k)
// No key? Make an implicit hash and move on.
if !ok {
p.addImplicit(keyContext)
hashContext[k] = make(map[string]interface{})
}
// If the hash context is actually an array of tables, then set
// the hash context to the last element in that array.
//
// Otherwise, it better be a table, since this MUST be a key group (by
// virtue of it not being the last element in a key).
switch t := hashContext[k].(type) {
case []map[string]interface{}:
hashContext = t[len(t)-1]
case map[string]interface{}:
hashContext = t
default:
p.panicf("Key '%s' was already created as a hash.", keyContext)
}
}
p.context = keyContext
if array {
// If this is the first element for this array, then allocate a new
// list of tables for it.
k := key[len(key)-1]
if _, ok := hashContext[k]; !ok {
hashContext[k] = make([]map[string]interface{}, 0, 5)
}
// Add a new table. But make sure the key hasn't already been used
// for something else.
if hash, ok := hashContext[k].([]map[string]interface{}); ok {
hashContext[k] = append(hash, make(map[string]interface{}))
} else {
p.panicf("Key '%s' was already created and cannot be used as "+
"an array.", keyContext)
}
} else {
p.setValue(key[len(key)-1], make(map[string]interface{}))
}
p.context = append(p.context, key[len(key)-1])
}
// setValue sets the given key to the given value in the current context.
// It will make sure that the key hasn't already been defined, account for
// implicit key groups.
func (p *parser) setValue(key string, value interface{}) {
var tmpHash interface{}
var ok bool
hash := p.mapping
keyContext := make(Key, 0)
for _, k := range p.context {
keyContext = append(keyContext, k)
if tmpHash, ok = hash[k]; !ok {
p.bug("Context for key '%s' has not been established.", keyContext)
}
switch t := tmpHash.(type) {
case []map[string]interface{}:
// The context is a table of hashes. Pick the most recent table
// defined as the current hash.
hash = t[len(t)-1]
case map[string]interface{}:
hash = t
default:
p.bug("Expected hash to have type 'map[string]interface{}', but "+
"it has '%T' instead.", tmpHash)
}
}
keyContext = append(keyContext, key)
if _, ok := hash[key]; ok {
// Typically, if the given key has already been set, then we have
// to raise an error since duplicate keys are disallowed. However,
// it's possible that a key was previously defined implicitly. In this
// case, it is allowed to be redefined concretely. (See the
// `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
//
// But we have to make sure to stop marking it as an implicit. (So that
// another redefinition provokes an error.)
//
// Note that since it has already been defined (as a hash), we don't
// want to overwrite it. So our business is done.
if p.isImplicit(keyContext) {
p.removeImplicit(keyContext)
return
}
// Otherwise, we have a concrete key trying to override a previous
// key, which is *always* wrong.
p.panicf("Key '%s' has already been defined.", keyContext)
}
hash[key] = value
}
// setType sets the type of a particular value at a given key.
// It should be called immediately AFTER setValue.
//
// Note that if `key` is empty, then the type given will be applied to the
// current context (which is either a table or an array of tables).
func (p *parser) setType(key string, typ tomlType) {
keyContext := make(Key, 0, len(p.context)+1)
for _, k := range p.context {
keyContext = append(keyContext, k)
}
if len(key) > 0 { // allow type setting for hashes
keyContext = append(keyContext, key)
}
p.types[keyContext.String()] = typ
}
// addImplicit sets the given Key as having been created implicitly.
func (p *parser) addImplicit(key Key) {
p.implicits[key.String()] = true
}
// removeImplicit stops tagging the given key as having been implicitly
// created.
func (p *parser) removeImplicit(key Key) {
p.implicits[key.String()] = false
}
// isImplicit returns true if the key group pointed to by the key was created
// implicitly.
func (p *parser) isImplicit(key Key) bool {
return p.implicits[key.String()]
}
// current returns the full key name of the current context.
func (p *parser) current() string {
if len(p.currentKey) == 0 {
return p.context.String()
}
if len(p.context) == 0 {
return p.currentKey
}
return fmt.Sprintf("%s.%s", p.context, p.currentKey)
}
func stripFirstNewline(s string) string {
if len(s) == 0 || s[0] != '\n' {
return s
}
return s[1:]
}
func stripEscapedWhitespace(s string) string {
esc := strings.Split(s, "\\\n")
if len(esc) > 1 {
for i := 1; i < len(esc); i++ {
esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
}
}
return strings.Join(esc, "")
}
func (p *parser) replaceEscapes(str string) string {
var replaced []rune
s := []byte(str)
r := 0
for r < len(s) {
if s[r] != '\\' {
c, size := utf8.DecodeRune(s[r:])
r += size
replaced = append(replaced, c)
continue
}
r += 1
if r >= len(s) {
p.bug("Escape sequence at end of string.")
return ""
}
switch s[r] {
default:
p.bug("Expected valid escape code after \\, but got %q.", s[r])
return ""
case 'b':
replaced = append(replaced, rune(0x0008))
r += 1
case 't':
replaced = append(replaced, rune(0x0009))
r += 1
case 'n':
replaced = append(replaced, rune(0x000A))
r += 1
case 'f':
replaced = append(replaced, rune(0x000C))
r += 1
case 'r':
replaced = append(replaced, rune(0x000D))
r += 1
case '"':
replaced = append(replaced, rune(0x0022))
r += 1
case '\\':
replaced = append(replaced, rune(0x005C))
r += 1
case 'u':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+5). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
replaced = append(replaced, escaped)
r += 5
case 'U':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+9). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
replaced = append(replaced, escaped)
r += 9
}
}
return string(replaced)
}
func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
s := string(bs)
hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
if err != nil {
p.bug("Could not parse '%s' as a hexadecimal number, but the "+
"lexer claims it's OK: %s", s, err)
}
if !utf8.ValidRune(rune(hex)) {
p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
}
return rune(hex)
}
func isStringType(ty itemType) bool {
return ty == itemString || ty == itemMultilineString ||
ty == itemRawString || ty == itemRawMultilineString
}

View File

@ -1 +0,0 @@
au BufWritePost *.go silent!make tags > /dev/null 2>&1

View File

@ -1,91 +0,0 @@
package toml
// tomlType represents any Go type that corresponds to a TOML type.
// While the first draft of the TOML spec has a simplistic type system that
// probably doesn't need this level of sophistication, we seem to be militating
// toward adding real composite types.
type tomlType interface {
typeString() string
}
// typeEqual accepts any two types and returns true if they are equal.
func typeEqual(t1, t2 tomlType) bool {
if t1 == nil || t2 == nil {
return false
}
return t1.typeString() == t2.typeString()
}
func typeIsHash(t tomlType) bool {
return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
}
type tomlBaseType string
func (btype tomlBaseType) typeString() string {
return string(btype)
}
func (btype tomlBaseType) String() string {
return btype.typeString()
}
var (
tomlInteger tomlBaseType = "Integer"
tomlFloat tomlBaseType = "Float"
tomlDatetime tomlBaseType = "Datetime"
tomlString tomlBaseType = "String"
tomlBool tomlBaseType = "Bool"
tomlArray tomlBaseType = "Array"
tomlHash tomlBaseType = "Hash"
tomlArrayHash tomlBaseType = "ArrayHash"
)
// typeOfPrimitive returns a tomlType of any primitive value in TOML.
// Primitive values are: Integer, Float, Datetime, String and Bool.
//
// Passing a lexer item other than the following will cause a BUG message
// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
func (p *parser) typeOfPrimitive(lexItem item) tomlType {
switch lexItem.typ {
case itemInteger:
return tomlInteger
case itemFloat:
return tomlFloat
case itemDatetime:
return tomlDatetime
case itemString:
return tomlString
case itemMultilineString:
return tomlString
case itemRawString:
return tomlString
case itemRawMultilineString:
return tomlString
case itemBool:
return tomlBool
}
p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
panic("unreachable")
}
// typeOfArray returns a tomlType for an array given a list of types of its
// values.
//
// In the current spec, if an array is homogeneous, then its type is always
// "Array". If the array is not homogeneous, an error is generated.
func (p *parser) typeOfArray(types []tomlType) tomlType {
// Empty arrays are cool.
if len(types) == 0 {
return tomlArray
}
theType := types[0]
for _, t := range types[1:] {
if !typeEqual(theType, t) {
p.panicf("Array contains values of type '%s' and '%s', but "+
"arrays must be homogeneous.", theType, t)
}
}
return tomlArray
}

View File

@ -1,242 +0,0 @@
package toml
// Struct field handling is adapted from code in encoding/json:
//
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the Go distribution.
import (
"reflect"
"sort"
"sync"
)
// A field represents a single field found in a struct.
type field struct {
name string // the name of the field (`toml` tag included)
tag bool // whether field has a `toml` tag
index []int // represents the depth of an anonymous field
typ reflect.Type // the type of the field
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from toml tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that TOML should recognize for the given
// type. The algorithm is breadth-first search over the set of structs to
// include - the top struct and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
opts := getOptions(sf.Tag)
if opts.skip {
continue
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if opts.name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := opts.name != ""
name := opts.name
if name == "" {
name = sf.Name
}
fields = append(fields, field{name, tagged, index, ft})
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
f := field{name: ft.Name(), index: index, typ: ft}
next = append(next, f)
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with TOML tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// TOML tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}

View File

@ -1,4 +0,0 @@
*.prof
*.test
*.swp
/bin/

View File

@ -1,20 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 Ben Johnson
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,18 +0,0 @@
BRANCH=`git rev-parse --abbrev-ref HEAD`
COMMIT=`git rev-parse --short HEAD`
GOLDFLAGS="-X main.branch $(BRANCH) -X main.commit $(COMMIT)"
default: build
race:
@go test -v -race -test.run="TestSimulate_(100op|1000op)"
# go get github.com/kisielk/errcheck
errcheck:
@errcheck -ignorepkg=bytes -ignore=os:Remove github.com/boltdb/bolt
test:
@go test -v -cover .
@go test -v ./cmd/bolt
.PHONY: fmt test

View File

@ -1,916 +0,0 @@
Bolt [![Coverage Status](https://coveralls.io/repos/boltdb/bolt/badge.svg?branch=master)](https://coveralls.io/r/boltdb/bolt?branch=master) [![GoDoc](https://godoc.org/github.com/boltdb/bolt?status.svg)](https://godoc.org/github.com/boltdb/bolt) ![Version](https://img.shields.io/badge/version-1.2.1-green.svg)
====
Bolt is a pure Go key/value store inspired by [Howard Chu's][hyc_symas]
[LMDB project][lmdb]. The goal of the project is to provide a simple,
fast, and reliable database for projects that don't require a full database
server such as Postgres or MySQL.
Since Bolt is meant to be used as such a low-level piece of functionality,
simplicity is key. The API will be small and only focus on getting values
and setting values. That's it.
[hyc_symas]: https://twitter.com/hyc_symas
[lmdb]: http://symas.com/mdb/
## Project Status
Bolt is stable, the API is fixed, and the file format is fixed. Full unit
test coverage and randomized black box testing are used to ensure database
consistency and thread safety. Bolt is currently used in high-load production
environments serving databases as large as 1TB. Many companies such as
Shopify and Heroku use Bolt-backed services every day.
## Table of Contents
- [Getting Started](#getting-started)
- [Installing](#installing)
- [Opening a database](#opening-a-database)
- [Transactions](#transactions)
- [Read-write transactions](#read-write-transactions)
- [Read-only transactions](#read-only-transactions)
- [Batch read-write transactions](#batch-read-write-transactions)
- [Managing transactions manually](#managing-transactions-manually)
- [Using buckets](#using-buckets)
- [Using key/value pairs](#using-keyvalue-pairs)
- [Autoincrementing integer for the bucket](#autoincrementing-integer-for-the-bucket)
- [Iterating over keys](#iterating-over-keys)
- [Prefix scans](#prefix-scans)
- [Range scans](#range-scans)
- [ForEach()](#foreach)
- [Nested buckets](#nested-buckets)
- [Database backups](#database-backups)
- [Statistics](#statistics)
- [Read-Only Mode](#read-only-mode)
- [Mobile Use (iOS/Android)](#mobile-use-iosandroid)
- [Resources](#resources)
- [Comparison with other databases](#comparison-with-other-databases)
- [Postgres, MySQL, & other relational databases](#postgres-mysql--other-relational-databases)
- [LevelDB, RocksDB](#leveldb-rocksdb)
- [LMDB](#lmdb)
- [Caveats & Limitations](#caveats--limitations)
- [Reading the Source](#reading-the-source)
- [Other Projects Using Bolt](#other-projects-using-bolt)
## Getting Started
### Installing
To start using Bolt, install Go and run `go get`:
```sh
$ go get github.com/boltdb/bolt/...
```
This will retrieve the library and install the `bolt` command line utility into
your `$GOBIN` path.
### Opening a database
The top-level object in Bolt is a `DB`. It is represented as a single file on
your disk and represents a consistent snapshot of your data.
To open your database, simply use the `bolt.Open()` function:
```go
package main
import (
"log"
"github.com/boltdb/bolt"
)
func main() {
// Open the my.db data file in your current directory.
// It will be created if it doesn't exist.
db, err := bolt.Open("my.db", 0600, nil)
if err != nil {
log.Fatal(err)
}
defer db.Close()
...
}
```
Please note that Bolt obtains a file lock on the data file so multiple processes
cannot open the same database at the same time. Opening an already open Bolt
database will cause it to hang until the other process closes it. To prevent
an indefinite wait you can pass a timeout option to the `Open()` function:
```go
db, err := bolt.Open("my.db", 0600, &bolt.Options{Timeout: 1 * time.Second})
```
### Transactions
Bolt allows only one read-write transaction at a time but allows as many
read-only transactions as you want at a time. Each transaction has a consistent
view of the data as it existed when the transaction started.
Individual transactions and all objects created from them (e.g. buckets, keys)
are not thread safe. To work with data in multiple goroutines you must start
a transaction for each one or use locking to ensure only one goroutine accesses
a transaction at a time. Creating transaction from the `DB` is thread safe.
Read-only transactions and read-write transactions should not depend on one
another and generally shouldn't be opened simultaneously in the same goroutine.
This can cause a deadlock as the read-write transaction needs to periodically
re-map the data file but it cannot do so while a read-only transaction is open.
#### Read-write transactions
To start a read-write transaction, you can use the `DB.Update()` function:
```go
err := db.Update(func(tx *bolt.Tx) error {
...
return nil
})
```
Inside the closure, you have a consistent view of the database. You commit the
transaction by returning `nil` at the end. You can also rollback the transaction
at any point by returning an error. All database operations are allowed inside
a read-write transaction.
Always check the return error as it will report any disk failures that can cause
your transaction to not complete. If you return an error within your closure
it will be passed through.
#### Read-only transactions
To start a read-only transaction, you can use the `DB.View()` function:
```go
err := db.View(func(tx *bolt.Tx) error {
...
return nil
})
```
You also get a consistent view of the database within this closure, however,
no mutating operations are allowed within a read-only transaction. You can only
retrieve buckets, retrieve values, and copy the database within a read-only
transaction.
#### Batch read-write transactions
Each `DB.Update()` waits for disk to commit the writes. This overhead
can be minimized by combining multiple updates with the `DB.Batch()`
function:
```go
err := db.Batch(func(tx *bolt.Tx) error {
...
return nil
})
```
Concurrent Batch calls are opportunistically combined into larger
transactions. Batch is only useful when there are multiple goroutines
calling it.
The trade-off is that `Batch` can call the given
function multiple times, if parts of the transaction fail. The
function must be idempotent and side effects must take effect only
after a successful return from `DB.Batch()`.
For example: don't display messages from inside the function, instead
set variables in the enclosing scope:
```go
var id uint64
err := db.Batch(func(tx *bolt.Tx) error {
// Find last key in bucket, decode as bigendian uint64, increment
// by one, encode back to []byte, and add new key.
...
id = newValue
return nil
})
if err != nil {
return ...
}
fmt.Println("Allocated ID %d", id)
```
#### Managing transactions manually
The `DB.View()` and `DB.Update()` functions are wrappers around the `DB.Begin()`
function. These helper functions will start the transaction, execute a function,
and then safely close your transaction if an error is returned. This is the
recommended way to use Bolt transactions.
However, sometimes you may want to manually start and end your transactions.
You can use the `DB.Begin()` function directly but **please** be sure to close
the transaction.
```go
// Start a writable transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
defer tx.Rollback()
// Use the transaction...
_, err := tx.CreateBucket([]byte("MyBucket"))
if err != nil {
return err
}
// Commit the transaction and check for error.
if err := tx.Commit(); err != nil {
return err
}
```
The first argument to `DB.Begin()` is a boolean stating if the transaction
should be writable.
### Using buckets
Buckets are collections of key/value pairs within the database. All keys in a
bucket must be unique. You can create a bucket using the `DB.CreateBucket()`
function:
```go
db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucket([]byte("MyBucket"))
if err != nil {
return fmt.Errorf("create bucket: %s", err)
}
return nil
})
```
You can also create a bucket only if it doesn't exist by using the
`Tx.CreateBucketIfNotExists()` function. It's a common pattern to call this
function for all your top-level buckets after you open your database so you can
guarantee that they exist for future transactions.
To delete a bucket, simply call the `Tx.DeleteBucket()` function.
### Using key/value pairs
To save a key/value pair to a bucket, use the `Bucket.Put()` function:
```go
db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
err := b.Put([]byte("answer"), []byte("42"))
return err
})
```
This will set the value of the `"answer"` key to `"42"` in the `MyBucket`
bucket. To retrieve this value, we can use the `Bucket.Get()` function:
```go
db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
v := b.Get([]byte("answer"))
fmt.Printf("The answer is: %s\n", v)
return nil
})
```
The `Get()` function does not return an error because its operation is
guaranteed to work (unless there is some kind of system failure). If the key
exists then it will return its byte slice value. If it doesn't exist then it
will return `nil`. It's important to note that you can have a zero-length value
set to a key which is different than the key not existing.
Use the `Bucket.Delete()` function to delete a key from the bucket.
Please note that values returned from `Get()` are only valid while the
transaction is open. If you need to use a value outside of the transaction
then you must use `copy()` to copy it to another byte slice.
### Autoincrementing integer for the bucket
By using the `NextSequence()` function, you can let Bolt determine a sequence
which can be used as the unique identifier for your key/value pairs. See the
example below.
```go
// CreateUser saves u to the store. The new user ID is set on u once the data is persisted.
func (s *Store) CreateUser(u *User) error {
return s.db.Update(func(tx *bolt.Tx) error {
// Retrieve the users bucket.
// This should be created when the DB is first opened.
b := tx.Bucket([]byte("users"))
// Generate ID for the user.
// This returns an error only if the Tx is closed or not writeable.
// That can't happen in an Update() call so I ignore the error check.
id, _ := b.NextSequence()
u.ID = int(id)
// Marshal user data into bytes.
buf, err := json.Marshal(u)
if err != nil {
return err
}
// Persist bytes to users bucket.
return b.Put(itob(u.ID), buf)
})
}
// itob returns an 8-byte big endian representation of v.
func itob(v int) []byte {
b := make([]byte, 8)
binary.BigEndian.PutUint64(b, uint64(v))
return b
}
type User struct {
ID int
...
}
```
### Iterating over keys
Bolt stores its keys in byte-sorted order within a bucket. This makes sequential
iteration over these keys extremely fast. To iterate over keys we'll use a
`Cursor`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
The cursor allows you to move to a specific point in the list of keys and move
forward or backward through the keys one at a time.
The following functions are available on the cursor:
```
First() Move to the first key.
Last() Move to the last key.
Seek() Move to a specific key.
Next() Move to the next key.
Prev() Move to the previous key.
```
Each of those functions has a return signature of `(key []byte, value []byte)`.
When you have iterated to the end of the cursor then `Next()` will return a
`nil` key. You must seek to a position using `First()`, `Last()`, or `Seek()`
before calling `Next()` or `Prev()`. If you do not seek to a position then
these functions will return a `nil` key.
During iteration, if the key is non-`nil` but the value is `nil`, that means
the key refers to a bucket rather than a value. Use `Bucket.Bucket()` to
access the sub-bucket.
#### Prefix scans
To iterate over a key prefix, you can combine `Seek()` and `bytes.HasPrefix()`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
c := tx.Bucket([]byte("MyBucket")).Cursor()
prefix := []byte("1234")
for k, v := c.Seek(prefix); k != nil && bytes.HasPrefix(k, prefix); k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
#### Range scans
Another common use case is scanning over a range such as a time range. If you
use a sortable time encoding such as RFC3339 then you can query a specific
date range like this:
```go
db.View(func(tx *bolt.Tx) error {
// Assume our events bucket exists and has RFC3339 encoded time keys.
c := tx.Bucket([]byte("Events")).Cursor()
// Our time range spans the 90's decade.
min := []byte("1990-01-01T00:00:00Z")
max := []byte("2000-01-01T00:00:00Z")
// Iterate over the 90's.
for k, v := c.Seek(min); k != nil && bytes.Compare(k, max) <= 0; k, v = c.Next() {
fmt.Printf("%s: %s\n", k, v)
}
return nil
})
```
Note that, while RFC3339 is sortable, the Golang implementation of RFC3339Nano does not use a fixed number of digits after the decimal point and is therefore not sortable.
#### ForEach()
You can also use the function `ForEach()` if you know you'll be iterating over
all the keys in a bucket:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
b.ForEach(func(k, v []byte) error {
fmt.Printf("key=%s, value=%s\n", k, v)
return nil
})
return nil
})
```
Please note that keys and values in `ForEach()` are only valid while
the transaction is open. If you need to use a key or value outside of
the transaction, you must use `copy()` to copy it to another byte
slice.
### Nested buckets
You can also store a bucket in a key to create nested buckets. The API is the
same as the bucket management API on the `DB` object:
```go
func (*Bucket) CreateBucket(key []byte) (*Bucket, error)
func (*Bucket) CreateBucketIfNotExists(key []byte) (*Bucket, error)
func (*Bucket) DeleteBucket(key []byte) error
```
Say you had a multi-tenant application where the root level bucket was the account bucket. Inside of this bucket was a sequence of accounts which themselves are buckets. And inside the sequence bucket you could have many buckets pertaining to the Account itself (Users, Notes, etc) isolating the information into logical groupings.
```go
// createUser creates a new user in the given account.
func createUser(accountID int, u *User) error {
// Start the transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
defer tx.Rollback()
// Retrieve the root bucket for the account.
// Assume this has already been created when the account was set up.
root := tx.Bucket([]byte(strconv.FormatUint(accountID, 10)))
// Setup the users bucket.
bkt, err := root.CreateBucketIfNotExists([]byte("USERS"))
if err != nil {
return err
}
// Generate an ID for the new user.
userID, err := bkt.NextSequence()
if err != nil {
return err
}
u.ID = userID
// Marshal and save the encoded user.
if buf, err := json.Marshal(u); err != nil {
return err
} else if err := bkt.Put([]byte(strconv.FormatUint(u.ID, 10)), buf); err != nil {
return err
}
// Commit the transaction.
if err := tx.Commit(); err != nil {
return err
}
return nil
}
```
### Database backups
Bolt is a single file so it's easy to backup. You can use the `Tx.WriteTo()`
function to write a consistent view of the database to a writer. If you call
this from a read-only transaction, it will perform a hot backup and not block
your other database reads and writes.
By default, it will use a regular file handle which will utilize the operating
system's page cache. See the [`Tx`](https://godoc.org/github.com/boltdb/bolt#Tx)
documentation for information about optimizing for larger-than-RAM datasets.
One common use case is to backup over HTTP so you can use tools like `cURL` to
do database backups:
```go
func BackupHandleFunc(w http.ResponseWriter, req *http.Request) {
err := db.View(func(tx *bolt.Tx) error {
w.Header().Set("Content-Type", "application/octet-stream")
w.Header().Set("Content-Disposition", `attachment; filename="my.db"`)
w.Header().Set("Content-Length", strconv.Itoa(int(tx.Size())))
_, err := tx.WriteTo(w)
return err
})
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
}
}
```
Then you can backup using this command:
```sh
$ curl http://localhost/backup > my.db
```
Or you can open your browser to `http://localhost/backup` and it will download
automatically.
If you want to backup to another file you can use the `Tx.CopyFile()` helper
function.
### Statistics
The database keeps a running count of many of the internal operations it
performs so you can better understand what's going on. By grabbing a snapshot
of these stats at two points in time we can see what operations were performed
in that time range.
For example, we could start a goroutine to log stats every 10 seconds:
```go
go func() {
// Grab the initial stats.
prev := db.Stats()
for {
// Wait for 10s.
time.Sleep(10 * time.Second)
// Grab the current stats and diff them.
stats := db.Stats()
diff := stats.Sub(&prev)
// Encode stats to JSON and print to STDERR.
json.NewEncoder(os.Stderr).Encode(diff)
// Save stats for the next loop.
prev = stats
}
}()
```
It's also useful to pipe these stats to a service such as statsd for monitoring
or to provide an HTTP endpoint that will perform a fixed-length sample.
### Read-Only Mode
Sometimes it is useful to create a shared, read-only Bolt database. To this,
set the `Options.ReadOnly` flag when opening your database. Read-only mode
uses a shared lock to allow multiple processes to read from the database but
it will block any processes from opening the database in read-write mode.
```go
db, err := bolt.Open("my.db", 0666, &bolt.Options{ReadOnly: true})
if err != nil {
log.Fatal(err)
}
```
### Mobile Use (iOS/Android)
Bolt is able to run on mobile devices by leveraging the binding feature of the
[gomobile](https://github.com/golang/mobile) tool. Create a struct that will
contain your database logic and a reference to a `*bolt.DB` with a initializing
constructor that takes in a filepath where the database file will be stored.
Neither Android nor iOS require extra permissions or cleanup from using this method.
```go
func NewBoltDB(filepath string) *BoltDB {
db, err := bolt.Open(filepath+"/demo.db", 0600, nil)
if err != nil {
log.Fatal(err)
}
return &BoltDB{db}
}
type BoltDB struct {
db *bolt.DB
...
}
func (b *BoltDB) Path() string {
return b.db.Path()
}
func (b *BoltDB) Close() {
b.db.Close()
}
```
Database logic should be defined as methods on this wrapper struct.
To initialize this struct from the native language (both platforms now sync
their local storage to the cloud. These snippets disable that functionality for the
database file):
#### Android
```java
String path;
if (android.os.Build.VERSION.SDK_INT >=android.os.Build.VERSION_CODES.LOLLIPOP){
path = getNoBackupFilesDir().getAbsolutePath();
} else{
path = getFilesDir().getAbsolutePath();
}
Boltmobiledemo.BoltDB boltDB = Boltmobiledemo.NewBoltDB(path)
```
#### iOS
```objc
- (void)demo {
NSString* path = [NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
NSUserDomainMask,
YES) objectAtIndex:0];
GoBoltmobiledemoBoltDB * demo = GoBoltmobiledemoNewBoltDB(path);
[self addSkipBackupAttributeToItemAtPath:demo.path];
//Some DB Logic would go here
[demo close];
}
- (BOOL)addSkipBackupAttributeToItemAtPath:(NSString *) filePathString
{
NSURL* URL= [NSURL fileURLWithPath: filePathString];
assert([[NSFileManager defaultManager] fileExistsAtPath: [URL path]]);
NSError *error = nil;
BOOL success = [URL setResourceValue: [NSNumber numberWithBool: YES]
forKey: NSURLIsExcludedFromBackupKey error: &error];
if(!success){
NSLog(@"Error excluding %@ from backup %@", [URL lastPathComponent], error);
}
return success;
}
```
## Resources
For more information on getting started with Bolt, check out the following articles:
* [Intro to BoltDB: Painless Performant Persistence](http://npf.io/2014/07/intro-to-boltdb-painless-performant-persistence/) by [Nate Finch](https://github.com/natefinch).
* [Bolt -- an embedded key/value database for Go](https://www.progville.com/go/bolt-embedded-db-golang/) by Progville
## Comparison with other databases
### Postgres, MySQL, & other relational databases
Relational databases structure data into rows and are only accessible through
the use of SQL. This approach provides flexibility in how you store and query
your data but also incurs overhead in parsing and planning SQL statements. Bolt
accesses all data by a byte slice key. This makes Bolt fast to read and write
data by key but provides no built-in support for joining values together.
Most relational databases (with the exception of SQLite) are standalone servers
that run separately from your application. This gives your systems
flexibility to connect multiple application servers to a single database
server but also adds overhead in serializing and transporting data over the
network. Bolt runs as a library included in your application so all data access
has to go through your application's process. This brings data closer to your
application but limits multi-process access to the data.
### LevelDB, RocksDB
LevelDB and its derivatives (RocksDB, HyperLevelDB) are similar to Bolt in that
they are libraries bundled into the application, however, their underlying
structure is a log-structured merge-tree (LSM tree). An LSM tree optimizes
random writes by using a write ahead log and multi-tiered, sorted files called
SSTables. Bolt uses a B+tree internally and only a single file. Both approaches
have trade-offs.
If you require a high random write throughput (>10,000 w/sec) or you need to use
spinning disks then LevelDB could be a good choice. If your application is
read-heavy or does a lot of range scans then Bolt could be a good choice.
One other important consideration is that LevelDB does not have transactions.
It supports batch writing of key/values pairs and it supports read snapshots
but it will not give you the ability to do a compare-and-swap operation safely.
Bolt supports fully serializable ACID transactions.
### LMDB
Bolt was originally a port of LMDB so it is architecturally similar. Both use
a B+tree, have ACID semantics with fully serializable transactions, and support
lock-free MVCC using a single writer and multiple readers.
The two projects have somewhat diverged. LMDB heavily focuses on raw performance
while Bolt has focused on simplicity and ease of use. For example, LMDB allows
several unsafe actions such as direct writes for the sake of performance. Bolt
opts to disallow actions which can leave the database in a corrupted state. The
only exception to this in Bolt is `DB.NoSync`.
There are also a few differences in API. LMDB requires a maximum mmap size when
opening an `mdb_env` whereas Bolt will handle incremental mmap resizing
automatically. LMDB overloads the getter and setter functions with multiple
flags whereas Bolt splits these specialized cases into their own functions.
## Caveats & Limitations
It's important to pick the right tool for the job and Bolt is no exception.
Here are a few things to note when evaluating and using Bolt:
* Bolt is good for read intensive workloads. Sequential write performance is
also fast but random writes can be slow. You can use `DB.Batch()` or add a
write-ahead log to help mitigate this issue.
* Bolt uses a B+tree internally so there can be a lot of random page access.
SSDs provide a significant performance boost over spinning disks.
* Try to avoid long running read transactions. Bolt uses copy-on-write so
old pages cannot be reclaimed while an old transaction is using them.
* Byte slices returned from Bolt are only valid during a transaction. Once the
transaction has been committed or rolled back then the memory they point to
can be reused by a new page or can be unmapped from virtual memory and you'll
see an `unexpected fault address` panic when accessing it.
* Bolt uses an exclusive write lock on the database file so it cannot be
shared by multiple processes.
* Be careful when using `Bucket.FillPercent`. Setting a high fill percent for
buckets that have random inserts will cause your database to have very poor
page utilization.
* Use larger buckets in general. Smaller buckets causes poor page utilization
once they become larger than the page size (typically 4KB).
* Bulk loading a lot of random writes into a new bucket can be slow as the
page will not split until the transaction is committed. Randomly inserting
more than 100,000 key/value pairs into a single new bucket in a single
transaction is not advised.
* Bolt uses a memory-mapped file so the underlying operating system handles the
caching of the data. Typically, the OS will cache as much of the file as it
can in memory and will release memory as needed to other processes. This means
that Bolt can show very high memory usage when working with large databases.
However, this is expected and the OS will release memory as needed. Bolt can
handle databases much larger than the available physical RAM, provided its
memory-map fits in the process virtual address space. It may be problematic
on 32-bits systems.
* The data structures in the Bolt database are memory mapped so the data file
will be endian specific. This means that you cannot copy a Bolt file from a
little endian machine to a big endian machine and have it work. For most
users this is not a concern since most modern CPUs are little endian.
* Because of the way pages are laid out on disk, Bolt cannot truncate data files
and return free pages back to the disk. Instead, Bolt maintains a free list
of unused pages within its data file. These free pages can be reused by later
transactions. This works well for many use cases as databases generally tend
to grow. However, it's important to note that deleting large chunks of data
will not allow you to reclaim that space on disk.
For more information on page allocation, [see this comment][page-allocation].
[page-allocation]: https://github.com/boltdb/bolt/issues/308#issuecomment-74811638
## Reading the Source
Bolt is a relatively small code base (<3KLOC) for an embedded, serializable,
transactional key/value database so it can be a good starting point for people
interested in how databases work.
The best places to start are the main entry points into Bolt:
- `Open()` - Initializes the reference to the database. It's responsible for
creating the database if it doesn't exist, obtaining an exclusive lock on the
file, reading the meta pages, & memory-mapping the file.
- `DB.Begin()` - Starts a read-only or read-write transaction depending on the
value of the `writable` argument. This requires briefly obtaining the "meta"
lock to keep track of open transactions. Only one read-write transaction can
exist at a time so the "rwlock" is acquired during the life of a read-write
transaction.
- `Bucket.Put()` - Writes a key/value pair into a bucket. After validating the
arguments, a cursor is used to traverse the B+tree to the page and position
where they key & value will be written. Once the position is found, the bucket
materializes the underlying page and the page's parent pages into memory as
"nodes". These nodes are where mutations occur during read-write transactions.
These changes get flushed to disk during commit.
- `Bucket.Get()` - Retrieves a key/value pair from a bucket. This uses a cursor
to move to the page & position of a key/value pair. During a read-only
transaction, the key and value data is returned as a direct reference to the
underlying mmap file so there's no allocation overhead. For read-write
transactions, this data may reference the mmap file or one of the in-memory
node values.
- `Cursor` - This object is simply for traversing the B+tree of on-disk pages
or in-memory nodes. It can seek to a specific key, move to the first or last
value, or it can move forward or backward. The cursor handles the movement up
and down the B+tree transparently to the end user.
- `Tx.Commit()` - Converts the in-memory dirty nodes and the list of free pages
into pages to be written to disk. Writing to disk then occurs in two phases.
First, the dirty pages are written to disk and an `fsync()` occurs. Second, a
new meta page with an incremented transaction ID is written and another
`fsync()` occurs. This two phase write ensures that partially written data
pages are ignored in the event of a crash since the meta page pointing to them
is never written. Partially written meta pages are invalidated because they
are written with a checksum.
If you have additional notes that could be helpful for others, please submit
them via pull request.
## Other Projects Using Bolt
Below is a list of public, open source projects that use Bolt:
* [BoltDbWeb](https://github.com/evnix/boltdbweb) - A web based GUI for BoltDB files.
* [Operation Go: A Routine Mission](http://gocode.io) - An online programming game for Golang using Bolt for user accounts and a leaderboard.
* [Bazil](https://bazil.org/) - A file system that lets your data reside where it is most convenient for it to reside.
* [DVID](https://github.com/janelia-flyem/dvid) - Added Bolt as optional storage engine and testing it against Basho-tuned leveldb.
* [Skybox Analytics](https://github.com/skybox/skybox) - A standalone funnel analysis tool for web analytics.
* [Scuttlebutt](https://github.com/benbjohnson/scuttlebutt) - Uses Bolt to store and process all Twitter mentions of GitHub projects.
* [Wiki](https://github.com/peterhellberg/wiki) - A tiny wiki using Goji, BoltDB and Blackfriday.
* [ChainStore](https://github.com/pressly/chainstore) - Simple key-value interface to a variety of storage engines organized as a chain of operations.
* [MetricBase](https://github.com/msiebuhr/MetricBase) - Single-binary version of Graphite.
* [Gitchain](https://github.com/gitchain/gitchain) - Decentralized, peer-to-peer Git repositories aka "Git meets Bitcoin".
* [event-shuttle](https://github.com/sclasen/event-shuttle) - A Unix system service to collect and reliably deliver messages to Kafka.
* [ipxed](https://github.com/kelseyhightower/ipxed) - Web interface and api for ipxed.
* [BoltStore](https://github.com/yosssi/boltstore) - Session store using Bolt.
* [photosite/session](https://godoc.org/bitbucket.org/kardianos/photosite/session) - Sessions for a photo viewing site.
* [LedisDB](https://github.com/siddontang/ledisdb) - A high performance NoSQL, using Bolt as optional storage.
* [ipLocator](https://github.com/AndreasBriese/ipLocator) - A fast ip-geo-location-server using bolt with bloom filters.
* [cayley](https://github.com/google/cayley) - Cayley is an open-source graph database using Bolt as optional backend.
* [bleve](http://www.blevesearch.com/) - A pure Go search engine similar to ElasticSearch that uses Bolt as the default storage backend.
* [tentacool](https://github.com/optiflows/tentacool) - REST api server to manage system stuff (IP, DNS, Gateway...) on a linux server.
* [Seaweed File System](https://github.com/chrislusf/seaweedfs) - Highly scalable distributed key~file system with O(1) disk read.
* [InfluxDB](https://influxdata.com) - Scalable datastore for metrics, events, and real-time analytics.
* [Freehold](http://tshannon.bitbucket.org/freehold/) - An open, secure, and lightweight platform for your files and data.
* [Prometheus Annotation Server](https://github.com/oliver006/prom_annotation_server) - Annotation server for PromDash & Prometheus service monitoring system.
* [Consul](https://github.com/hashicorp/consul) - Consul is service discovery and configuration made easy. Distributed, highly available, and datacenter-aware.
* [Kala](https://github.com/ajvb/kala) - Kala is a modern job scheduler optimized to run on a single node. It is persistent, JSON over HTTP API, ISO 8601 duration notation, and dependent jobs.
* [drive](https://github.com/odeke-em/drive) - drive is an unofficial Google Drive command line client for \*NIX operating systems.
* [stow](https://github.com/djherbis/stow) - a persistence manager for objects
backed by boltdb.
* [buckets](https://github.com/joyrexus/buckets) - a bolt wrapper streamlining
simple tx and key scans.
* [mbuckets](https://github.com/abhigupta912/mbuckets) - A Bolt wrapper that allows easy operations on multi level (nested) buckets.
* [Request Baskets](https://github.com/darklynx/request-baskets) - A web service to collect arbitrary HTTP requests and inspect them via REST API or simple web UI, similar to [RequestBin](http://requestb.in/) service
* [Go Report Card](https://goreportcard.com/) - Go code quality report cards as a (free and open source) service.
* [Boltdb Boilerplate](https://github.com/bobintornado/boltdb-boilerplate) - Boilerplate wrapper around bolt aiming to make simple calls one-liners.
* [lru](https://github.com/crowdriff/lru) - Easy to use Bolt-backed Least-Recently-Used (LRU) read-through cache with chainable remote stores.
* [Storm](https://github.com/asdine/storm) - Simple and powerful ORM for BoltDB.
* [GoWebApp](https://github.com/josephspurrier/gowebapp) - A basic MVC web application in Go using BoltDB.
* [SimpleBolt](https://github.com/xyproto/simplebolt) - A simple way to use BoltDB. Deals mainly with strings.
* [Algernon](https://github.com/xyproto/algernon) - A HTTP/2 web server with built-in support for Lua. Uses BoltDB as the default database backend.
* [MuLiFS](https://github.com/dankomiocevic/mulifs) - Music Library Filesystem creates a filesystem to organise your music files.
* [GoShort](https://github.com/pankajkhairnar/goShort) - GoShort is a URL shortener written in Golang and BoltDB for persistent key/value storage and for routing it's using high performent HTTPRouter.
* [torrent](https://github.com/anacrolix/torrent) - Full-featured BitTorrent client package and utilities in Go. BoltDB is a storage backend in development.
* [gopherpit](https://github.com/gopherpit/gopherpit) - A web service to manage Go remote import paths with custom domains
* [bolter](https://github.com/hasit/bolter) - Command-line app for viewing BoltDB file in your terminal.
* [btcwallet](https://github.com/btcsuite/btcwallet) - A bitcoin wallet.
* [dcrwallet](https://github.com/decred/dcrwallet) - A wallet for the Decred cryptocurrency.
* [Ironsmith](https://github.com/timshannon/ironsmith) - A simple, script-driven continuous integration (build - > test -> release) tool, with no external dependencies
* [BoltHold](https://github.com/timshannon/bolthold) - An embeddable NoSQL store for Go types built on BoltDB
* [Ponzu CMS](https://ponzu-cms.org) - Headless CMS + automatic JSON API with auto-HTTPS, HTTP/2 Server Push, and flexible server framework.
If you are using Bolt in a project please send a pull request to add it to the list.

View File

@ -1,18 +0,0 @@
version: "{build}"
os: Windows Server 2012 R2
clone_folder: c:\gopath\src\github.com\boltdb\bolt
environment:
GOPATH: c:\gopath
install:
- echo %PATH%
- echo %GOPATH%
- go version
- go env
- go get -v -t ./...
build_script:
- go test -v ./...

View File

@ -1,10 +0,0 @@
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,10 +0,0 @@
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,28 +0,0 @@
package bolt
import "unsafe"
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned bool
func init() {
// Simple check to see whether this arch handles unaligned load/stores
// correctly.
// ARM9 and older devices require load/stores to be from/to aligned
// addresses. If not, the lower 2 bits are cleared and that address is
// read in a jumbled up order.
// See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html
raw := [6]byte{0xfe, 0xef, 0x11, 0x22, 0x22, 0x11}
val := *(*uint32)(unsafe.Pointer(uintptr(unsafe.Pointer(&raw)) + 2))
brokenUnaligned = val != 0x11222211
}

View File

@ -1,12 +0,0 @@
// +build arm64
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,10 +0,0 @@
package bolt
import (
"syscall"
)
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return syscall.Fdatasync(int(db.file.Fd()))
}

View File

@ -1,27 +0,0 @@
package bolt
import (
"syscall"
"unsafe"
)
const (
msAsync = 1 << iota // perform asynchronous writes
msSync // perform synchronous writes
msInvalidate // invalidate cached data
)
func msync(db *DB) error {
_, _, errno := syscall.Syscall(syscall.SYS_MSYNC, uintptr(unsafe.Pointer(db.data)), uintptr(db.datasz), msInvalidate)
if errno != 0 {
return errno
}
return nil
}
func fdatasync(db *DB) error {
if db.data != nil {
return msync(db)
}
return db.file.Sync()
}

View File

@ -1,9 +0,0 @@
// +build ppc
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0x7FFFFFFF // 2GB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0xFFFFFFF

View File

@ -1,12 +0,0 @@
// +build ppc64
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build ppc64le
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,12 +0,0 @@
// +build s390x
package bolt
// maxMapSize represents the largest mmap size supported by Bolt.
const maxMapSize = 0xFFFFFFFFFFFF // 256TB
// maxAllocSize is the size used when creating array pointers.
const maxAllocSize = 0x7FFFFFFF
// Are unaligned load/stores broken on this arch?
var brokenUnaligned = false

View File

@ -1,89 +0,0 @@
// +build !windows,!plan9,!solaris
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
)
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
var t time.Time
for {
// If we're beyond our timeout then return an error.
// This can only occur after we've attempted a flock once.
if t.IsZero() {
t = time.Now()
} else if timeout > 0 && time.Since(t) > timeout {
return ErrTimeout
}
flag := syscall.LOCK_SH
if exclusive {
flag = syscall.LOCK_EX
}
// Otherwise attempt to obtain an exclusive lock.
err := syscall.Flock(int(db.file.Fd()), flag|syscall.LOCK_NB)
if err == nil {
return nil
} else if err != syscall.EWOULDBLOCK {
return err
}
// Wait for a bit and try again.
time.Sleep(50 * time.Millisecond)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
return syscall.Flock(int(db.file.Fd()), syscall.LOCK_UN)
}
// mmap memory maps a DB's data file.
func mmap(db *DB, sz int) error {
// Map the data file to memory.
b, err := syscall.Mmap(int(db.file.Fd()), 0, sz, syscall.PROT_READ, syscall.MAP_SHARED|db.MmapFlags)
if err != nil {
return err
}
// Advise the kernel that the mmap is accessed randomly.
if err := madvise(b, syscall.MADV_RANDOM); err != nil {
return fmt.Errorf("madvise: %s", err)
}
// Save the original byte slice and convert to a byte array pointer.
db.dataref = b
db.data = (*[maxMapSize]byte)(unsafe.Pointer(&b[0]))
db.datasz = sz
return nil
}
// munmap unmaps a DB's data file from memory.
func munmap(db *DB) error {
// Ignore the unmap if we have no mapped data.
if db.dataref == nil {
return nil
}
// Unmap using the original byte slice.
err := syscall.Munmap(db.dataref)
db.dataref = nil
db.data = nil
db.datasz = 0
return err
}
// NOTE: This function is copied from stdlib because it is not available on darwin.
func madvise(b []byte, advice int) (err error) {
_, _, e1 := syscall.Syscall(syscall.SYS_MADVISE, uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), uintptr(advice))
if e1 != 0 {
err = e1
}
return
}

View File

@ -1,90 +0,0 @@
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
"golang.org/x/sys/unix"
)
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
var t time.Time
for {
// If we're beyond our timeout then return an error.
// This can only occur after we've attempted a flock once.
if t.IsZero() {
t = time.Now()
} else if timeout > 0 && time.Since(t) > timeout {
return ErrTimeout
}
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Pid = 0
lock.Whence = 0
lock.Pid = 0
if exclusive {
lock.Type = syscall.F_WRLCK
} else {
lock.Type = syscall.F_RDLCK
}
err := syscall.FcntlFlock(db.file.Fd(), syscall.F_SETLK, &lock)
if err == nil {
return nil
} else if err != syscall.EAGAIN {
return err
}
// Wait for a bit and try again.
time.Sleep(50 * time.Millisecond)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
var lock syscall.Flock_t
lock.Start = 0
lock.Len = 0
lock.Type = syscall.F_UNLCK
lock.Whence = 0
return syscall.FcntlFlock(uintptr(db.file.Fd()), syscall.F_SETLK, &lock)
}
// mmap memory maps a DB's data file.
func mmap(db *DB, sz int) error {
// Map the data file to memory.
b, err := unix.Mmap(int(db.file.Fd()), 0, sz, syscall.PROT_READ, syscall.MAP_SHARED|db.MmapFlags)
if err != nil {
return err
}
// Advise the kernel that the mmap is accessed randomly.
if err := unix.Madvise(b, syscall.MADV_RANDOM); err != nil {
return fmt.Errorf("madvise: %s", err)
}
// Save the original byte slice and convert to a byte array pointer.
db.dataref = b
db.data = (*[maxMapSize]byte)(unsafe.Pointer(&b[0]))
db.datasz = sz
return nil
}
// munmap unmaps a DB's data file from memory.
func munmap(db *DB) error {
// Ignore the unmap if we have no mapped data.
if db.dataref == nil {
return nil
}
// Unmap using the original byte slice.
err := unix.Munmap(db.dataref)
db.dataref = nil
db.data = nil
db.datasz = 0
return err
}

View File

@ -1,144 +0,0 @@
package bolt
import (
"fmt"
"os"
"syscall"
"time"
"unsafe"
)
// LockFileEx code derived from golang build filemutex_windows.go @ v1.5.1
var (
modkernel32 = syscall.NewLazyDLL("kernel32.dll")
procLockFileEx = modkernel32.NewProc("LockFileEx")
procUnlockFileEx = modkernel32.NewProc("UnlockFileEx")
)
const (
lockExt = ".lock"
// see https://msdn.microsoft.com/en-us/library/windows/desktop/aa365203(v=vs.85).aspx
flagLockExclusive = 2
flagLockFailImmediately = 1
// see https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382(v=vs.85).aspx
errLockViolation syscall.Errno = 0x21
)
func lockFileEx(h syscall.Handle, flags, reserved, locklow, lockhigh uint32, ol *syscall.Overlapped) (err error) {
r, _, err := procLockFileEx.Call(uintptr(h), uintptr(flags), uintptr(reserved), uintptr(locklow), uintptr(lockhigh), uintptr(unsafe.Pointer(ol)))
if r == 0 {
return err
}
return nil
}
func unlockFileEx(h syscall.Handle, reserved, locklow, lockhigh uint32, ol *syscall.Overlapped) (err error) {
r, _, err := procUnlockFileEx.Call(uintptr(h), uintptr(reserved), uintptr(locklow), uintptr(lockhigh), uintptr(unsafe.Pointer(ol)), 0)
if r == 0 {
return err
}
return nil
}
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return db.file.Sync()
}
// flock acquires an advisory lock on a file descriptor.
func flock(db *DB, mode os.FileMode, exclusive bool, timeout time.Duration) error {
// Create a separate lock file on windows because a process
// cannot share an exclusive lock on the same file. This is
// needed during Tx.WriteTo().
f, err := os.OpenFile(db.path+lockExt, os.O_CREATE, mode)
if err != nil {
return err
}
db.lockfile = f
var t time.Time
for {
// If we're beyond our timeout then return an error.
// This can only occur after we've attempted a flock once.
if t.IsZero() {
t = time.Now()
} else if timeout > 0 && time.Since(t) > timeout {
return ErrTimeout
}
var flag uint32 = flagLockFailImmediately
if exclusive {
flag |= flagLockExclusive
}
err := lockFileEx(syscall.Handle(db.lockfile.Fd()), flag, 0, 1, 0, &syscall.Overlapped{})
if err == nil {
return nil
} else if err != errLockViolation {
return err
}
// Wait for a bit and try again.
time.Sleep(50 * time.Millisecond)
}
}
// funlock releases an advisory lock on a file descriptor.
func funlock(db *DB) error {
err := unlockFileEx(syscall.Handle(db.lockfile.Fd()), 0, 1, 0, &syscall.Overlapped{})
db.lockfile.Close()
os.Remove(db.path + lockExt)
return err
}
// mmap memory maps a DB's data file.
// Based on: https://github.com/edsrzf/mmap-go
func mmap(db *DB, sz int) error {
if !db.readOnly {
// Truncate the database to the size of the mmap.
if err := db.file.Truncate(int64(sz)); err != nil {
return fmt.Errorf("truncate: %s", err)
}
}
// Open a file mapping handle.
sizelo := uint32(sz >> 32)
sizehi := uint32(sz) & 0xffffffff
h, errno := syscall.CreateFileMapping(syscall.Handle(db.file.Fd()), nil, syscall.PAGE_READONLY, sizelo, sizehi, nil)
if h == 0 {
return os.NewSyscallError("CreateFileMapping", errno)
}
// Create the memory map.
addr, errno := syscall.MapViewOfFile(h, syscall.FILE_MAP_READ, 0, 0, uintptr(sz))
if addr == 0 {
return os.NewSyscallError("MapViewOfFile", errno)
}
// Close mapping handle.
if err := syscall.CloseHandle(syscall.Handle(h)); err != nil {
return os.NewSyscallError("CloseHandle", err)
}
// Convert to a byte array.
db.data = ((*[maxMapSize]byte)(unsafe.Pointer(addr)))
db.datasz = sz
return nil
}
// munmap unmaps a pointer from a file.
// Based on: https://github.com/edsrzf/mmap-go
func munmap(db *DB) error {
if db.data == nil {
return nil
}
addr := (uintptr)(unsafe.Pointer(&db.data[0]))
if err := syscall.UnmapViewOfFile(addr); err != nil {
return os.NewSyscallError("UnmapViewOfFile", err)
}
return nil
}

View File

@ -1,8 +0,0 @@
// +build !windows,!plan9,!linux,!openbsd
package bolt
// fdatasync flushes written data to a file descriptor.
func fdatasync(db *DB) error {
return db.file.Sync()
}

View File

@ -1,777 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"unsafe"
)
const (
// MaxKeySize is the maximum length of a key, in bytes.
MaxKeySize = 32768
// MaxValueSize is the maximum length of a value, in bytes.
MaxValueSize = (1 << 31) - 2
)
const (
maxUint = ^uint(0)
minUint = 0
maxInt = int(^uint(0) >> 1)
minInt = -maxInt - 1
)
const bucketHeaderSize = int(unsafe.Sizeof(bucket{}))
const (
minFillPercent = 0.1
maxFillPercent = 1.0
)
// DefaultFillPercent is the percentage that split pages are filled.
// This value can be changed by setting Bucket.FillPercent.
const DefaultFillPercent = 0.5
// Bucket represents a collection of key/value pairs inside the database.
type Bucket struct {
*bucket
tx *Tx // the associated transaction
buckets map[string]*Bucket // subbucket cache
page *page // inline page reference
rootNode *node // materialized node for the root page.
nodes map[pgid]*node // node cache
// Sets the threshold for filling nodes when they split. By default,
// the bucket will fill to 50% but it can be useful to increase this
// amount if you know that your write workloads are mostly append-only.
//
// This is non-persisted across transactions so it must be set in every Tx.
FillPercent float64
}
// bucket represents the on-file representation of a bucket.
// This is stored as the "value" of a bucket key. If the bucket is small enough,
// then its root page can be stored inline in the "value", after the bucket
// header. In the case of inline buckets, the "root" will be 0.
type bucket struct {
root pgid // page id of the bucket's root-level page
sequence uint64 // monotonically incrementing, used by NextSequence()
}
// newBucket returns a new bucket associated with a transaction.
func newBucket(tx *Tx) Bucket {
var b = Bucket{tx: tx, FillPercent: DefaultFillPercent}
if tx.writable {
b.buckets = make(map[string]*Bucket)
b.nodes = make(map[pgid]*node)
}
return b
}
// Tx returns the tx of the bucket.
func (b *Bucket) Tx() *Tx {
return b.tx
}
// Root returns the root of the bucket.
func (b *Bucket) Root() pgid {
return b.root
}
// Writable returns whether the bucket is writable.
func (b *Bucket) Writable() bool {
return b.tx.writable
}
// Cursor creates a cursor associated with the bucket.
// The cursor is only valid as long as the transaction is open.
// Do not use a cursor after the transaction is closed.
func (b *Bucket) Cursor() *Cursor {
// Update transaction statistics.
b.tx.stats.CursorCount++
// Allocate and return a cursor.
return &Cursor{
bucket: b,
stack: make([]elemRef, 0),
}
}
// Bucket retrieves a nested bucket by name.
// Returns nil if the bucket does not exist.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) Bucket(name []byte) *Bucket {
if b.buckets != nil {
if child := b.buckets[string(name)]; child != nil {
return child
}
}
// Move cursor to key.
c := b.Cursor()
k, v, flags := c.seek(name)
// Return nil if the key doesn't exist or it is not a bucket.
if !bytes.Equal(name, k) || (flags&bucketLeafFlag) == 0 {
return nil
}
// Otherwise create a bucket and cache it.
var child = b.openBucket(v)
if b.buckets != nil {
b.buckets[string(name)] = child
}
return child
}
// Helper method that re-interprets a sub-bucket value
// from a parent into a Bucket
func (b *Bucket) openBucket(value []byte) *Bucket {
var child = newBucket(b.tx)
// If unaligned load/stores are broken on this arch and value is
// unaligned simply clone to an aligned byte array.
unaligned := brokenUnaligned && uintptr(unsafe.Pointer(&value[0]))&3 != 0
if unaligned {
value = cloneBytes(value)
}
// If this is a writable transaction then we need to copy the bucket entry.
// Read-only transactions can point directly at the mmap entry.
if b.tx.writable && !unaligned {
child.bucket = &bucket{}
*child.bucket = *(*bucket)(unsafe.Pointer(&value[0]))
} else {
child.bucket = (*bucket)(unsafe.Pointer(&value[0]))
}
// Save a reference to the inline page if the bucket is inline.
if child.root == 0 {
child.page = (*page)(unsafe.Pointer(&value[bucketHeaderSize]))
}
return &child
}
// CreateBucket creates a new bucket at the given key and returns the new bucket.
// Returns an error if the key already exists, if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) CreateBucket(key []byte) (*Bucket, error) {
if b.tx.db == nil {
return nil, ErrTxClosed
} else if !b.tx.writable {
return nil, ErrTxNotWritable
} else if len(key) == 0 {
return nil, ErrBucketNameRequired
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if there is an existing key.
if bytes.Equal(key, k) {
if (flags & bucketLeafFlag) != 0 {
return nil, ErrBucketExists
}
return nil, ErrIncompatibleValue
}
// Create empty, inline bucket.
var bucket = Bucket{
bucket: &bucket{},
rootNode: &node{isLeaf: true},
FillPercent: DefaultFillPercent,
}
var value = bucket.write()
// Insert into node.
key = cloneBytes(key)
c.node().put(key, key, value, 0, bucketLeafFlag)
// Since subbuckets are not allowed on inline buckets, we need to
// dereference the inline page, if it exists. This will cause the bucket
// to be treated as a regular, non-inline bucket for the rest of the tx.
b.page = nil
return b.Bucket(key), nil
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist and returns a reference to it.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (b *Bucket) CreateBucketIfNotExists(key []byte) (*Bucket, error) {
child, err := b.CreateBucket(key)
if err == ErrBucketExists {
return b.Bucket(key), nil
} else if err != nil {
return nil, err
}
return child, nil
}
// DeleteBucket deletes a bucket at the given key.
// Returns an error if the bucket does not exists, or if the key represents a non-bucket value.
func (b *Bucket) DeleteBucket(key []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if bucket doesn't exist or is not a bucket.
if !bytes.Equal(key, k) {
return ErrBucketNotFound
} else if (flags & bucketLeafFlag) == 0 {
return ErrIncompatibleValue
}
// Recursively delete all child buckets.
child := b.Bucket(key)
err := child.ForEach(func(k, v []byte) error {
if v == nil {
if err := child.DeleteBucket(k); err != nil {
return fmt.Errorf("delete bucket: %s", err)
}
}
return nil
})
if err != nil {
return err
}
// Remove cached copy.
delete(b.buckets, string(key))
// Release all bucket pages to freelist.
child.nodes = nil
child.rootNode = nil
child.free()
// Delete the node if we have a matching key.
c.node().del(key)
return nil
}
// Get retrieves the value for a key in the bucket.
// Returns a nil value if the key does not exist or if the key is a nested bucket.
// The returned value is only valid for the life of the transaction.
func (b *Bucket) Get(key []byte) []byte {
k, v, flags := b.Cursor().seek(key)
// Return nil if this is a bucket.
if (flags & bucketLeafFlag) != 0 {
return nil
}
// If our target node isn't the same key as what's passed in then return nil.
if !bytes.Equal(key, k) {
return nil
}
return v
}
// Put sets the value for a key in the bucket.
// If the key exist then its previous value will be overwritten.
// Supplied value must remain valid for the life of the transaction.
// Returns an error if the bucket was created from a read-only transaction, if the key is blank, if the key is too large, or if the value is too large.
func (b *Bucket) Put(key []byte, value []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
} else if len(key) == 0 {
return ErrKeyRequired
} else if len(key) > MaxKeySize {
return ErrKeyTooLarge
} else if int64(len(value)) > MaxValueSize {
return ErrValueTooLarge
}
// Move cursor to correct position.
c := b.Cursor()
k, _, flags := c.seek(key)
// Return an error if there is an existing key with a bucket value.
if bytes.Equal(key, k) && (flags&bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
// Insert into node.
key = cloneBytes(key)
c.node().put(key, key, value, 0, 0)
return nil
}
// Delete removes a key from the bucket.
// If the key does not exist then nothing is done and a nil error is returned.
// Returns an error if the bucket was created from a read-only transaction.
func (b *Bucket) Delete(key []byte) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Move cursor to correct position.
c := b.Cursor()
_, _, flags := c.seek(key)
// Return an error if there is already existing bucket value.
if (flags & bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
// Delete the node if we have a matching key.
c.node().del(key)
return nil
}
// Sequence returns the current integer for the bucket without incrementing it.
func (b *Bucket) Sequence() uint64 { return b.bucket.sequence }
// SetSequence updates the sequence number for the bucket.
func (b *Bucket) SetSequence(v uint64) error {
if b.tx.db == nil {
return ErrTxClosed
} else if !b.Writable() {
return ErrTxNotWritable
}
// Materialize the root node if it hasn't been already so that the
// bucket will be saved during commit.
if b.rootNode == nil {
_ = b.node(b.root, nil)
}
// Increment and return the sequence.
b.bucket.sequence = v
return nil
}
// NextSequence returns an autoincrementing integer for the bucket.
func (b *Bucket) NextSequence() (uint64, error) {
if b.tx.db == nil {
return 0, ErrTxClosed
} else if !b.Writable() {
return 0, ErrTxNotWritable
}
// Materialize the root node if it hasn't been already so that the
// bucket will be saved during commit.
if b.rootNode == nil {
_ = b.node(b.root, nil)
}
// Increment and return the sequence.
b.bucket.sequence++
return b.bucket.sequence, nil
}
// ForEach executes a function for each key/value pair in a bucket.
// If the provided function returns an error then the iteration is stopped and
// the error is returned to the caller. The provided function must not modify
// the bucket; this will result in undefined behavior.
func (b *Bucket) ForEach(fn func(k, v []byte) error) error {
if b.tx.db == nil {
return ErrTxClosed
}
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
if err := fn(k, v); err != nil {
return err
}
}
return nil
}
// Stat returns stats on a bucket.
func (b *Bucket) Stats() BucketStats {
var s, subStats BucketStats
pageSize := b.tx.db.pageSize
s.BucketN += 1
if b.root == 0 {
s.InlineBucketN += 1
}
b.forEachPage(func(p *page, depth int) {
if (p.flags & leafPageFlag) != 0 {
s.KeyN += int(p.count)
// used totals the used bytes for the page
used := pageHeaderSize
if p.count != 0 {
// If page has any elements, add all element headers.
used += leafPageElementSize * int(p.count-1)
// Add all element key, value sizes.
// The computation takes advantage of the fact that the position
// of the last element's key/value equals to the total of the sizes
// of all previous elements' keys and values.
// It also includes the last element's header.
lastElement := p.leafPageElement(p.count - 1)
used += int(lastElement.pos + lastElement.ksize + lastElement.vsize)
}
if b.root == 0 {
// For inlined bucket just update the inline stats
s.InlineBucketInuse += used
} else {
// For non-inlined bucket update all the leaf stats
s.LeafPageN++
s.LeafInuse += used
s.LeafOverflowN += int(p.overflow)
// Collect stats from sub-buckets.
// Do that by iterating over all element headers
// looking for the ones with the bucketLeafFlag.
for i := uint16(0); i < p.count; i++ {
e := p.leafPageElement(i)
if (e.flags & bucketLeafFlag) != 0 {
// For any bucket element, open the element value
// and recursively call Stats on the contained bucket.
subStats.Add(b.openBucket(e.value()).Stats())
}
}
}
} else if (p.flags & branchPageFlag) != 0 {
s.BranchPageN++
lastElement := p.branchPageElement(p.count - 1)
// used totals the used bytes for the page
// Add header and all element headers.
used := pageHeaderSize + (branchPageElementSize * int(p.count-1))
// Add size of all keys and values.
// Again, use the fact that last element's position equals to
// the total of key, value sizes of all previous elements.
used += int(lastElement.pos + lastElement.ksize)
s.BranchInuse += used
s.BranchOverflowN += int(p.overflow)
}
// Keep track of maximum page depth.
if depth+1 > s.Depth {
s.Depth = (depth + 1)
}
})
// Alloc stats can be computed from page counts and pageSize.
s.BranchAlloc = (s.BranchPageN + s.BranchOverflowN) * pageSize
s.LeafAlloc = (s.LeafPageN + s.LeafOverflowN) * pageSize
// Add the max depth of sub-buckets to get total nested depth.
s.Depth += subStats.Depth
// Add the stats for all sub-buckets
s.Add(subStats)
return s
}
// forEachPage iterates over every page in a bucket, including inline pages.
func (b *Bucket) forEachPage(fn func(*page, int)) {
// If we have an inline page then just use that.
if b.page != nil {
fn(b.page, 0)
return
}
// Otherwise traverse the page hierarchy.
b.tx.forEachPage(b.root, 0, fn)
}
// forEachPageNode iterates over every page (or node) in a bucket.
// This also includes inline pages.
func (b *Bucket) forEachPageNode(fn func(*page, *node, int)) {
// If we have an inline page or root node then just use that.
if b.page != nil {
fn(b.page, nil, 0)
return
}
b._forEachPageNode(b.root, 0, fn)
}
func (b *Bucket) _forEachPageNode(pgid pgid, depth int, fn func(*page, *node, int)) {
var p, n = b.pageNode(pgid)
// Execute function.
fn(p, n, depth)
// Recursively loop over children.
if p != nil {
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
b._forEachPageNode(elem.pgid, depth+1, fn)
}
}
} else {
if !n.isLeaf {
for _, inode := range n.inodes {
b._forEachPageNode(inode.pgid, depth+1, fn)
}
}
}
}
// spill writes all the nodes for this bucket to dirty pages.
func (b *Bucket) spill() error {
// Spill all child buckets first.
for name, child := range b.buckets {
// If the child bucket is small enough and it has no child buckets then
// write it inline into the parent bucket's page. Otherwise spill it
// like a normal bucket and make the parent value a pointer to the page.
var value []byte
if child.inlineable() {
child.free()
value = child.write()
} else {
if err := child.spill(); err != nil {
return err
}
// Update the child bucket header in this bucket.
value = make([]byte, unsafe.Sizeof(bucket{}))
var bucket = (*bucket)(unsafe.Pointer(&value[0]))
*bucket = *child.bucket
}
// Skip writing the bucket if there are no materialized nodes.
if child.rootNode == nil {
continue
}
// Update parent node.
var c = b.Cursor()
k, _, flags := c.seek([]byte(name))
if !bytes.Equal([]byte(name), k) {
panic(fmt.Sprintf("misplaced bucket header: %x -> %x", []byte(name), k))
}
if flags&bucketLeafFlag == 0 {
panic(fmt.Sprintf("unexpected bucket header flag: %x", flags))
}
c.node().put([]byte(name), []byte(name), value, 0, bucketLeafFlag)
}
// Ignore if there's not a materialized root node.
if b.rootNode == nil {
return nil
}
// Spill nodes.
if err := b.rootNode.spill(); err != nil {
return err
}
b.rootNode = b.rootNode.root()
// Update the root node for this bucket.
if b.rootNode.pgid >= b.tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", b.rootNode.pgid, b.tx.meta.pgid))
}
b.root = b.rootNode.pgid
return nil
}
// inlineable returns true if a bucket is small enough to be written inline
// and if it contains no subbuckets. Otherwise returns false.
func (b *Bucket) inlineable() bool {
var n = b.rootNode
// Bucket must only contain a single leaf node.
if n == nil || !n.isLeaf {
return false
}
// Bucket is not inlineable if it contains subbuckets or if it goes beyond
// our threshold for inline bucket size.
var size = pageHeaderSize
for _, inode := range n.inodes {
size += leafPageElementSize + len(inode.key) + len(inode.value)
if inode.flags&bucketLeafFlag != 0 {
return false
} else if size > b.maxInlineBucketSize() {
return false
}
}
return true
}
// Returns the maximum total size of a bucket to make it a candidate for inlining.
func (b *Bucket) maxInlineBucketSize() int {
return b.tx.db.pageSize / 4
}
// write allocates and writes a bucket to a byte slice.
func (b *Bucket) write() []byte {
// Allocate the appropriate size.
var n = b.rootNode
var value = make([]byte, bucketHeaderSize+n.size())
// Write a bucket header.
var bucket = (*bucket)(unsafe.Pointer(&value[0]))
*bucket = *b.bucket
// Convert byte slice to a fake page and write the root node.
var p = (*page)(unsafe.Pointer(&value[bucketHeaderSize]))
n.write(p)
return value
}
// rebalance attempts to balance all nodes.
func (b *Bucket) rebalance() {
for _, n := range b.nodes {
n.rebalance()
}
for _, child := range b.buckets {
child.rebalance()
}
}
// node creates a node from a page and associates it with a given parent.
func (b *Bucket) node(pgid pgid, parent *node) *node {
_assert(b.nodes != nil, "nodes map expected")
// Retrieve node if it's already been created.
if n := b.nodes[pgid]; n != nil {
return n
}
// Otherwise create a node and cache it.
n := &node{bucket: b, parent: parent}
if parent == nil {
b.rootNode = n
} else {
parent.children = append(parent.children, n)
}
// Use the inline page if this is an inline bucket.
var p = b.page
if p == nil {
p = b.tx.page(pgid)
}
// Read the page into the node and cache it.
n.read(p)
b.nodes[pgid] = n
// Update statistics.
b.tx.stats.NodeCount++
return n
}
// free recursively frees all pages in the bucket.
func (b *Bucket) free() {
if b.root == 0 {
return
}
var tx = b.tx
b.forEachPageNode(func(p *page, n *node, _ int) {
if p != nil {
tx.db.freelist.free(tx.meta.txid, p)
} else {
n.free()
}
})
b.root = 0
}
// dereference removes all references to the old mmap.
func (b *Bucket) dereference() {
if b.rootNode != nil {
b.rootNode.root().dereference()
}
for _, child := range b.buckets {
child.dereference()
}
}
// pageNode returns the in-memory node, if it exists.
// Otherwise returns the underlying page.
func (b *Bucket) pageNode(id pgid) (*page, *node) {
// Inline buckets have a fake page embedded in their value so treat them
// differently. We'll return the rootNode (if available) or the fake page.
if b.root == 0 {
if id != 0 {
panic(fmt.Sprintf("inline bucket non-zero page access(2): %d != 0", id))
}
if b.rootNode != nil {
return nil, b.rootNode
}
return b.page, nil
}
// Check the node cache for non-inline buckets.
if b.nodes != nil {
if n := b.nodes[id]; n != nil {
return nil, n
}
}
// Finally lookup the page from the transaction if no node is materialized.
return b.tx.page(id), nil
}
// BucketStats records statistics about resources used by a bucket.
type BucketStats struct {
// Page count statistics.
BranchPageN int // number of logical branch pages
BranchOverflowN int // number of physical branch overflow pages
LeafPageN int // number of logical leaf pages
LeafOverflowN int // number of physical leaf overflow pages
// Tree statistics.
KeyN int // number of keys/value pairs
Depth int // number of levels in B+tree
// Page size utilization.
BranchAlloc int // bytes allocated for physical branch pages
BranchInuse int // bytes actually used for branch data
LeafAlloc int // bytes allocated for physical leaf pages
LeafInuse int // bytes actually used for leaf data
// Bucket statistics
BucketN int // total number of buckets including the top bucket
InlineBucketN int // total number on inlined buckets
InlineBucketInuse int // bytes used for inlined buckets (also accounted for in LeafInuse)
}
func (s *BucketStats) Add(other BucketStats) {
s.BranchPageN += other.BranchPageN
s.BranchOverflowN += other.BranchOverflowN
s.LeafPageN += other.LeafPageN
s.LeafOverflowN += other.LeafOverflowN
s.KeyN += other.KeyN
if s.Depth < other.Depth {
s.Depth = other.Depth
}
s.BranchAlloc += other.BranchAlloc
s.BranchInuse += other.BranchInuse
s.LeafAlloc += other.LeafAlloc
s.LeafInuse += other.LeafInuse
s.BucketN += other.BucketN
s.InlineBucketN += other.InlineBucketN
s.InlineBucketInuse += other.InlineBucketInuse
}
// cloneBytes returns a copy of a given slice.
func cloneBytes(v []byte) []byte {
var clone = make([]byte, len(v))
copy(clone, v)
return clone
}

View File

@ -1,400 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"sort"
)
// Cursor represents an iterator that can traverse over all key/value pairs in a bucket in sorted order.
// Cursors see nested buckets with value == nil.
// Cursors can be obtained from a transaction and are valid as long as the transaction is open.
//
// Keys and values returned from the cursor are only valid for the life of the transaction.
//
// Changing data while traversing with a cursor may cause it to be invalidated
// and return unexpected keys and/or values. You must reposition your cursor
// after mutating data.
type Cursor struct {
bucket *Bucket
stack []elemRef
}
// Bucket returns the bucket that this cursor was created from.
func (c *Cursor) Bucket() *Bucket {
return c.bucket
}
// First moves the cursor to the first item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) First() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
c.stack = c.stack[:0]
p, n := c.bucket.pageNode(c.bucket.root)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
c.first()
// If we land on an empty page then move to the next value.
// https://github.com/boltdb/bolt/issues/450
if c.stack[len(c.stack)-1].count() == 0 {
c.next()
}
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Last moves the cursor to the last item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Last() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
c.stack = c.stack[:0]
p, n := c.bucket.pageNode(c.bucket.root)
ref := elemRef{page: p, node: n}
ref.index = ref.count() - 1
c.stack = append(c.stack, ref)
c.last()
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Next moves the cursor to the next item in the bucket and returns its key and value.
// If the cursor is at the end of the bucket then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Next() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
k, v, flags := c.next()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Prev moves the cursor to the previous item in the bucket and returns its key and value.
// If the cursor is at the beginning of the bucket then a nil key and value are returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Prev() (key []byte, value []byte) {
_assert(c.bucket.tx.db != nil, "tx closed")
// Attempt to move back one element until we're successful.
// Move up the stack as we hit the beginning of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index > 0 {
elem.index--
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the last element of the last leaf under this branch.
c.last()
k, v, flags := c.keyValue()
if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used. If no keys
// follow, a nil key is returned.
// The returned key and value are only valid for the life of the transaction.
func (c *Cursor) Seek(seek []byte) (key []byte, value []byte) {
k, v, flags := c.seek(seek)
// If we ended up after the last element of a page then move to the next one.
if ref := &c.stack[len(c.stack)-1]; ref.index >= ref.count() {
k, v, flags = c.next()
}
if k == nil {
return nil, nil
} else if (flags & uint32(bucketLeafFlag)) != 0 {
return k, nil
}
return k, v
}
// Delete removes the current key/value under the cursor from the bucket.
// Delete fails if current key/value is a bucket or if the transaction is not writable.
func (c *Cursor) Delete() error {
if c.bucket.tx.db == nil {
return ErrTxClosed
} else if !c.bucket.Writable() {
return ErrTxNotWritable
}
key, _, flags := c.keyValue()
// Return an error if current value is a bucket.
if (flags & bucketLeafFlag) != 0 {
return ErrIncompatibleValue
}
c.node().del(key)
return nil
}
// seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used.
func (c *Cursor) seek(seek []byte) (key []byte, value []byte, flags uint32) {
_assert(c.bucket.tx.db != nil, "tx closed")
// Start from root page/node and traverse to correct page.
c.stack = c.stack[:0]
c.search(seek, c.bucket.root)
ref := &c.stack[len(c.stack)-1]
// If the cursor is pointing to the end of page/node then return nil.
if ref.index >= ref.count() {
return nil, nil, 0
}
// If this is a bucket then return a nil value.
return c.keyValue()
}
// first moves the cursor to the first leaf element under the last page in the stack.
func (c *Cursor) first() {
for {
// Exit when we hit a leaf page.
var ref = &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the first element to the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.bucket.pageNode(pgid)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
}
}
// last moves the cursor to the last leaf element under the last page in the stack.
func (c *Cursor) last() {
for {
// Exit when we hit a leaf page.
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the last element in the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.bucket.pageNode(pgid)
var nextRef = elemRef{page: p, node: n}
nextRef.index = nextRef.count() - 1
c.stack = append(c.stack, nextRef)
}
}
// next moves to the next leaf element and returns the key and value.
// If the cursor is at the last leaf element then it stays there and returns nil.
func (c *Cursor) next() (key []byte, value []byte, flags uint32) {
for {
// Attempt to move over one element until we're successful.
// Move up the stack as we hit the end of each page in our stack.
var i int
for i = len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index < elem.count()-1 {
elem.index++
break
}
}
// If we've hit the root page then stop and return. This will leave the
// cursor on the last element of the last page.
if i == -1 {
return nil, nil, 0
}
// Otherwise start from where we left off in the stack and find the
// first element of the first leaf page.
c.stack = c.stack[:i+1]
c.first()
// If this is an empty page then restart and move back up the stack.
// https://github.com/boltdb/bolt/issues/450
if c.stack[len(c.stack)-1].count() == 0 {
continue
}
return c.keyValue()
}
}
// search recursively performs a binary search against a given page/node until it finds a given key.
func (c *Cursor) search(key []byte, pgid pgid) {
p, n := c.bucket.pageNode(pgid)
if p != nil && (p.flags&(branchPageFlag|leafPageFlag)) == 0 {
panic(fmt.Sprintf("invalid page type: %d: %x", p.id, p.flags))
}
e := elemRef{page: p, node: n}
c.stack = append(c.stack, e)
// If we're on a leaf page/node then find the specific node.
if e.isLeaf() {
c.nsearch(key)
return
}
if n != nil {
c.searchNode(key, n)
return
}
c.searchPage(key, p)
}
func (c *Cursor) searchNode(key []byte, n *node) {
var exact bool
index := sort.Search(len(n.inodes), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(n.inodes[i].key, key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, n.inodes[index].pgid)
}
func (c *Cursor) searchPage(key []byte, p *page) {
// Binary search for the correct range.
inodes := p.branchPageElements()
var exact bool
index := sort.Search(int(p.count), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(inodes[i].key(), key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, inodes[index].pgid)
}
// nsearch searches the leaf node on the top of the stack for a key.
func (c *Cursor) nsearch(key []byte) {
e := &c.stack[len(c.stack)-1]
p, n := e.page, e.node
// If we have a node then search its inodes.
if n != nil {
index := sort.Search(len(n.inodes), func(i int) bool {
return bytes.Compare(n.inodes[i].key, key) != -1
})
e.index = index
return
}
// If we have a page then search its leaf elements.
inodes := p.leafPageElements()
index := sort.Search(int(p.count), func(i int) bool {
return bytes.Compare(inodes[i].key(), key) != -1
})
e.index = index
}
// keyValue returns the key and value of the current leaf element.
func (c *Cursor) keyValue() ([]byte, []byte, uint32) {
ref := &c.stack[len(c.stack)-1]
if ref.count() == 0 || ref.index >= ref.count() {
return nil, nil, 0
}
// Retrieve value from node.
if ref.node != nil {
inode := &ref.node.inodes[ref.index]
return inode.key, inode.value, inode.flags
}
// Or retrieve value from page.
elem := ref.page.leafPageElement(uint16(ref.index))
return elem.key(), elem.value(), elem.flags
}
// node returns the node that the cursor is currently positioned on.
func (c *Cursor) node() *node {
_assert(len(c.stack) > 0, "accessing a node with a zero-length cursor stack")
// If the top of the stack is a leaf node then just return it.
if ref := &c.stack[len(c.stack)-1]; ref.node != nil && ref.isLeaf() {
return ref.node
}
// Start from root and traverse down the hierarchy.
var n = c.stack[0].node
if n == nil {
n = c.bucket.node(c.stack[0].page.id, nil)
}
for _, ref := range c.stack[:len(c.stack)-1] {
_assert(!n.isLeaf, "expected branch node")
n = n.childAt(int(ref.index))
}
_assert(n.isLeaf, "expected leaf node")
return n
}
// elemRef represents a reference to an element on a given page/node.
type elemRef struct {
page *page
node *node
index int
}
// isLeaf returns whether the ref is pointing at a leaf page/node.
func (r *elemRef) isLeaf() bool {
if r.node != nil {
return r.node.isLeaf
}
return (r.page.flags & leafPageFlag) != 0
}
// count returns the number of inodes or page elements.
func (r *elemRef) count() int {
if r.node != nil {
return len(r.node.inodes)
}
return int(r.page.count)
}

1039
vendor/github.com/boltdb/bolt/db.go generated vendored

File diff suppressed because it is too large Load Diff

44
vendor/github.com/boltdb/bolt/doc.go generated vendored
View File

@ -1,44 +0,0 @@
/*
Package bolt implements a low-level key/value store in pure Go. It supports
fully serializable transactions, ACID semantics, and lock-free MVCC with
multiple readers and a single writer. Bolt can be used for projects that
want a simple data store without the need to add large dependencies such as
Postgres or MySQL.
Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is
optimized for fast read access and does not require recovery in the event of a
system crash. Transactions which have not finished committing will simply be
rolled back in the event of a crash.
The design of Bolt is based on Howard Chu's LMDB database project.
Bolt currently works on Windows, Mac OS X, and Linux.
Basics
There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is
a collection of buckets and is represented by a single file on disk. A bucket is
a collection of unique keys that are associated with values.
Transactions provide either read-only or read-write access to the database.
Read-only transactions can retrieve key/value pairs and can use Cursors to
iterate over the dataset sequentially. Read-write transactions can create and
delete buckets and can insert and remove keys. Only one read-write transaction
is allowed at a time.
Caveats
The database uses a read-only, memory-mapped data file to ensure that
applications cannot corrupt the database, however, this means that keys and
values returned from Bolt cannot be changed. Writing to a read-only byte slice
will cause Go to panic.
Keys and values retrieved from the database are only valid for the life of
the transaction. When used outside the transaction, these byte slices can
point to different data or can point to invalid memory which will cause a panic.
*/
package bolt

View File

@ -1,71 +0,0 @@
package bolt
import "errors"
// These errors can be returned when opening or calling methods on a DB.
var (
// ErrDatabaseNotOpen is returned when a DB instance is accessed before it
// is opened or after it is closed.
ErrDatabaseNotOpen = errors.New("database not open")
// ErrDatabaseOpen is returned when opening a database that is
// already open.
ErrDatabaseOpen = errors.New("database already open")
// ErrInvalid is returned when both meta pages on a database are invalid.
// This typically occurs when a file is not a bolt database.
ErrInvalid = errors.New("invalid database")
// ErrVersionMismatch is returned when the data file was created with a
// different version of Bolt.
ErrVersionMismatch = errors.New("version mismatch")
// ErrChecksum is returned when either meta page checksum does not match.
ErrChecksum = errors.New("checksum error")
// ErrTimeout is returned when a database cannot obtain an exclusive lock
// on the data file after the timeout passed to Open().
ErrTimeout = errors.New("timeout")
)
// These errors can occur when beginning or committing a Tx.
var (
// ErrTxNotWritable is returned when performing a write operation on a
// read-only transaction.
ErrTxNotWritable = errors.New("tx not writable")
// ErrTxClosed is returned when committing or rolling back a transaction
// that has already been committed or rolled back.
ErrTxClosed = errors.New("tx closed")
// ErrDatabaseReadOnly is returned when a mutating transaction is started on a
// read-only database.
ErrDatabaseReadOnly = errors.New("database is in read-only mode")
)
// These errors can occur when putting or deleting a value or a bucket.
var (
// ErrBucketNotFound is returned when trying to access a bucket that has
// not been created yet.
ErrBucketNotFound = errors.New("bucket not found")
// ErrBucketExists is returned when creating a bucket that already exists.
ErrBucketExists = errors.New("bucket already exists")
// ErrBucketNameRequired is returned when creating a bucket with a blank name.
ErrBucketNameRequired = errors.New("bucket name required")
// ErrKeyRequired is returned when inserting a zero-length key.
ErrKeyRequired = errors.New("key required")
// ErrKeyTooLarge is returned when inserting a key that is larger than MaxKeySize.
ErrKeyTooLarge = errors.New("key too large")
// ErrValueTooLarge is returned when inserting a value that is larger than MaxValueSize.
ErrValueTooLarge = errors.New("value too large")
// ErrIncompatibleValue is returned when trying create or delete a bucket
// on an existing non-bucket key or when trying to create or delete a
// non-bucket key on an existing bucket key.
ErrIncompatibleValue = errors.New("incompatible value")
)

View File

@ -1,252 +0,0 @@
package bolt
import (
"fmt"
"sort"
"unsafe"
)
// freelist represents a list of all pages that are available for allocation.
// It also tracks pages that have been freed but are still in use by open transactions.
type freelist struct {
ids []pgid // all free and available free page ids.
pending map[txid][]pgid // mapping of soon-to-be free page ids by tx.
cache map[pgid]bool // fast lookup of all free and pending page ids.
}
// newFreelist returns an empty, initialized freelist.
func newFreelist() *freelist {
return &freelist{
pending: make(map[txid][]pgid),
cache: make(map[pgid]bool),
}
}
// size returns the size of the page after serialization.
func (f *freelist) size() int {
n := f.count()
if n >= 0xFFFF {
// The first element will be used to store the count. See freelist.write.
n++
}
return pageHeaderSize + (int(unsafe.Sizeof(pgid(0))) * n)
}
// count returns count of pages on the freelist
func (f *freelist) count() int {
return f.free_count() + f.pending_count()
}
// free_count returns count of free pages
func (f *freelist) free_count() int {
return len(f.ids)
}
// pending_count returns count of pending pages
func (f *freelist) pending_count() int {
var count int
for _, list := range f.pending {
count += len(list)
}
return count
}
// copyall copies into dst a list of all free ids and all pending ids in one sorted list.
// f.count returns the minimum length required for dst.
func (f *freelist) copyall(dst []pgid) {
m := make(pgids, 0, f.pending_count())
for _, list := range f.pending {
m = append(m, list...)
}
sort.Sort(m)
mergepgids(dst, f.ids, m)
}
// allocate returns the starting page id of a contiguous list of pages of a given size.
// If a contiguous block cannot be found then 0 is returned.
func (f *freelist) allocate(n int) pgid {
if len(f.ids) == 0 {
return 0
}
var initial, previd pgid
for i, id := range f.ids {
if id <= 1 {
panic(fmt.Sprintf("invalid page allocation: %d", id))
}
// Reset initial page if this is not contiguous.
if previd == 0 || id-previd != 1 {
initial = id
}
// If we found a contiguous block then remove it and return it.
if (id-initial)+1 == pgid(n) {
// If we're allocating off the beginning then take the fast path
// and just adjust the existing slice. This will use extra memory
// temporarily but the append() in free() will realloc the slice
// as is necessary.
if (i + 1) == n {
f.ids = f.ids[i+1:]
} else {
copy(f.ids[i-n+1:], f.ids[i+1:])
f.ids = f.ids[:len(f.ids)-n]
}
// Remove from the free cache.
for i := pgid(0); i < pgid(n); i++ {
delete(f.cache, initial+i)
}
return initial
}
previd = id
}
return 0
}
// free releases a page and its overflow for a given transaction id.
// If the page is already free then a panic will occur.
func (f *freelist) free(txid txid, p *page) {
if p.id <= 1 {
panic(fmt.Sprintf("cannot free page 0 or 1: %d", p.id))
}
// Free page and all its overflow pages.
var ids = f.pending[txid]
for id := p.id; id <= p.id+pgid(p.overflow); id++ {
// Verify that page is not already free.
if f.cache[id] {
panic(fmt.Sprintf("page %d already freed", id))
}
// Add to the freelist and cache.
ids = append(ids, id)
f.cache[id] = true
}
f.pending[txid] = ids
}
// release moves all page ids for a transaction id (or older) to the freelist.
func (f *freelist) release(txid txid) {
m := make(pgids, 0)
for tid, ids := range f.pending {
if tid <= txid {
// Move transaction's pending pages to the available freelist.
// Don't remove from the cache since the page is still free.
m = append(m, ids...)
delete(f.pending, tid)
}
}
sort.Sort(m)
f.ids = pgids(f.ids).merge(m)
}
// rollback removes the pages from a given pending tx.
func (f *freelist) rollback(txid txid) {
// Remove page ids from cache.
for _, id := range f.pending[txid] {
delete(f.cache, id)
}
// Remove pages from pending list.
delete(f.pending, txid)
}
// freed returns whether a given page is in the free list.
func (f *freelist) freed(pgid pgid) bool {
return f.cache[pgid]
}
// read initializes the freelist from a freelist page.
func (f *freelist) read(p *page) {
// If the page.count is at the max uint16 value (64k) then it's considered
// an overflow and the size of the freelist is stored as the first element.
idx, count := 0, int(p.count)
if count == 0xFFFF {
idx = 1
count = int(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[0])
}
// Copy the list of page ids from the freelist.
if count == 0 {
f.ids = nil
} else {
ids := ((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[idx:count]
f.ids = make([]pgid, len(ids))
copy(f.ids, ids)
// Make sure they're sorted.
sort.Sort(pgids(f.ids))
}
// Rebuild the page cache.
f.reindex()
}
// write writes the page ids onto a freelist page. All free and pending ids are
// saved to disk since in the event of a program crash, all pending ids will
// become free.
func (f *freelist) write(p *page) error {
// Combine the old free pgids and pgids waiting on an open transaction.
// Update the header flag.
p.flags |= freelistPageFlag
// The page.count can only hold up to 64k elements so if we overflow that
// number then we handle it by putting the size in the first element.
lenids := f.count()
if lenids == 0 {
p.count = uint16(lenids)
} else if lenids < 0xFFFF {
p.count = uint16(lenids)
f.copyall(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[:])
} else {
p.count = 0xFFFF
((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[0] = pgid(lenids)
f.copyall(((*[maxAllocSize]pgid)(unsafe.Pointer(&p.ptr)))[1:])
}
return nil
}
// reload reads the freelist from a page and filters out pending items.
func (f *freelist) reload(p *page) {
f.read(p)
// Build a cache of only pending pages.
pcache := make(map[pgid]bool)
for _, pendingIDs := range f.pending {
for _, pendingID := range pendingIDs {
pcache[pendingID] = true
}
}
// Check each page in the freelist and build a new available freelist
// with any pages not in the pending lists.
var a []pgid
for _, id := range f.ids {
if !pcache[id] {
a = append(a, id)
}
}
f.ids = a
// Once the available list is rebuilt then rebuild the free cache so that
// it includes the available and pending free pages.
f.reindex()
}
// reindex rebuilds the free cache based on available and pending free lists.
func (f *freelist) reindex() {
f.cache = make(map[pgid]bool, len(f.ids))
for _, id := range f.ids {
f.cache[id] = true
}
for _, pendingIDs := range f.pending {
for _, pendingID := range pendingIDs {
f.cache[pendingID] = true
}
}
}

604
vendor/github.com/boltdb/bolt/node.go generated vendored
View File

@ -1,604 +0,0 @@
package bolt
import (
"bytes"
"fmt"
"sort"
"unsafe"
)
// node represents an in-memory, deserialized page.
type node struct {
bucket *Bucket
isLeaf bool
unbalanced bool
spilled bool
key []byte
pgid pgid
parent *node
children nodes
inodes inodes
}
// root returns the top-level node this node is attached to.
func (n *node) root() *node {
if n.parent == nil {
return n
}
return n.parent.root()
}
// minKeys returns the minimum number of inodes this node should have.
func (n *node) minKeys() int {
if n.isLeaf {
return 1
}
return 2
}
// size returns the size of the node after serialization.
func (n *node) size() int {
sz, elsz := pageHeaderSize, n.pageElementSize()
for i := 0; i < len(n.inodes); i++ {
item := &n.inodes[i]
sz += elsz + len(item.key) + len(item.value)
}
return sz
}
// sizeLessThan returns true if the node is less than a given size.
// This is an optimization to avoid calculating a large node when we only need
// to know if it fits inside a certain page size.
func (n *node) sizeLessThan(v int) bool {
sz, elsz := pageHeaderSize, n.pageElementSize()
for i := 0; i < len(n.inodes); i++ {
item := &n.inodes[i]
sz += elsz + len(item.key) + len(item.value)
if sz >= v {
return false
}
}
return true
}
// pageElementSize returns the size of each page element based on the type of node.
func (n *node) pageElementSize() int {
if n.isLeaf {
return leafPageElementSize
}
return branchPageElementSize
}
// childAt returns the child node at a given index.
func (n *node) childAt(index int) *node {
if n.isLeaf {
panic(fmt.Sprintf("invalid childAt(%d) on a leaf node", index))
}
return n.bucket.node(n.inodes[index].pgid, n)
}
// childIndex returns the index of a given child node.
func (n *node) childIndex(child *node) int {
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, child.key) != -1 })
return index
}
// numChildren returns the number of children.
func (n *node) numChildren() int {
return len(n.inodes)
}
// nextSibling returns the next node with the same parent.
func (n *node) nextSibling() *node {
if n.parent == nil {
return nil
}
index := n.parent.childIndex(n)
if index >= n.parent.numChildren()-1 {
return nil
}
return n.parent.childAt(index + 1)
}
// prevSibling returns the previous node with the same parent.
func (n *node) prevSibling() *node {
if n.parent == nil {
return nil
}
index := n.parent.childIndex(n)
if index == 0 {
return nil
}
return n.parent.childAt(index - 1)
}
// put inserts a key/value.
func (n *node) put(oldKey, newKey, value []byte, pgid pgid, flags uint32) {
if pgid >= n.bucket.tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", pgid, n.bucket.tx.meta.pgid))
} else if len(oldKey) <= 0 {
panic("put: zero-length old key")
} else if len(newKey) <= 0 {
panic("put: zero-length new key")
}
// Find insertion index.
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, oldKey) != -1 })
// Add capacity and shift nodes if we don't have an exact match and need to insert.
exact := (len(n.inodes) > 0 && index < len(n.inodes) && bytes.Equal(n.inodes[index].key, oldKey))
if !exact {
n.inodes = append(n.inodes, inode{})
copy(n.inodes[index+1:], n.inodes[index:])
}
inode := &n.inodes[index]
inode.flags = flags
inode.key = newKey
inode.value = value
inode.pgid = pgid
_assert(len(inode.key) > 0, "put: zero-length inode key")
}
// del removes a key from the node.
func (n *node) del(key []byte) {
// Find index of key.
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, key) != -1 })
// Exit if the key isn't found.
if index >= len(n.inodes) || !bytes.Equal(n.inodes[index].key, key) {
return
}
// Delete inode from the node.
n.inodes = append(n.inodes[:index], n.inodes[index+1:]...)
// Mark the node as needing rebalancing.
n.unbalanced = true
}
// read initializes the node from a page.
func (n *node) read(p *page) {
n.pgid = p.id
n.isLeaf = ((p.flags & leafPageFlag) != 0)
n.inodes = make(inodes, int(p.count))
for i := 0; i < int(p.count); i++ {
inode := &n.inodes[i]
if n.isLeaf {
elem := p.leafPageElement(uint16(i))
inode.flags = elem.flags
inode.key = elem.key()
inode.value = elem.value()
} else {
elem := p.branchPageElement(uint16(i))
inode.pgid = elem.pgid
inode.key = elem.key()
}
_assert(len(inode.key) > 0, "read: zero-length inode key")
}
// Save first key so we can find the node in the parent when we spill.
if len(n.inodes) > 0 {
n.key = n.inodes[0].key
_assert(len(n.key) > 0, "read: zero-length node key")
} else {
n.key = nil
}
}
// write writes the items onto one or more pages.
func (n *node) write(p *page) {
// Initialize page.
if n.isLeaf {
p.flags |= leafPageFlag
} else {
p.flags |= branchPageFlag
}
if len(n.inodes) >= 0xFFFF {
panic(fmt.Sprintf("inode overflow: %d (pgid=%d)", len(n.inodes), p.id))
}
p.count = uint16(len(n.inodes))
// Stop here if there are no items to write.
if p.count == 0 {
return
}
// Loop over each item and write it to the page.
b := (*[maxAllocSize]byte)(unsafe.Pointer(&p.ptr))[n.pageElementSize()*len(n.inodes):]
for i, item := range n.inodes {
_assert(len(item.key) > 0, "write: zero-length inode key")
// Write the page element.
if n.isLeaf {
elem := p.leafPageElement(uint16(i))
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
elem.flags = item.flags
elem.ksize = uint32(len(item.key))
elem.vsize = uint32(len(item.value))
} else {
elem := p.branchPageElement(uint16(i))
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
elem.ksize = uint32(len(item.key))
elem.pgid = item.pgid
_assert(elem.pgid != p.id, "write: circular dependency occurred")
}
// If the length of key+value is larger than the max allocation size
// then we need to reallocate the byte array pointer.
//
// See: https://github.com/boltdb/bolt/pull/335
klen, vlen := len(item.key), len(item.value)
if len(b) < klen+vlen {
b = (*[maxAllocSize]byte)(unsafe.Pointer(&b[0]))[:]
}
// Write data for the element to the end of the page.
copy(b[0:], item.key)
b = b[klen:]
copy(b[0:], item.value)
b = b[vlen:]
}
// DEBUG ONLY: n.dump()
}
// split breaks up a node into multiple smaller nodes, if appropriate.
// This should only be called from the spill() function.
func (n *node) split(pageSize int) []*node {
var nodes []*node
node := n
for {
// Split node into two.
a, b := node.splitTwo(pageSize)
nodes = append(nodes, a)
// If we can't split then exit the loop.
if b == nil {
break
}
// Set node to b so it gets split on the next iteration.
node = b
}
return nodes
}
// splitTwo breaks up a node into two smaller nodes, if appropriate.
// This should only be called from the split() function.
func (n *node) splitTwo(pageSize int) (*node, *node) {
// Ignore the split if the page doesn't have at least enough nodes for
// two pages or if the nodes can fit in a single page.
if len(n.inodes) <= (minKeysPerPage*2) || n.sizeLessThan(pageSize) {
return n, nil
}
// Determine the threshold before starting a new node.
var fillPercent = n.bucket.FillPercent
if fillPercent < minFillPercent {
fillPercent = minFillPercent
} else if fillPercent > maxFillPercent {
fillPercent = maxFillPercent
}
threshold := int(float64(pageSize) * fillPercent)
// Determine split position and sizes of the two pages.
splitIndex, _ := n.splitIndex(threshold)
// Split node into two separate nodes.
// If there's no parent then we'll need to create one.
if n.parent == nil {
n.parent = &node{bucket: n.bucket, children: []*node{n}}
}
// Create a new node and add it to the parent.
next := &node{bucket: n.bucket, isLeaf: n.isLeaf, parent: n.parent}
n.parent.children = append(n.parent.children, next)
// Split inodes across two nodes.
next.inodes = n.inodes[splitIndex:]
n.inodes = n.inodes[:splitIndex]
// Update the statistics.
n.bucket.tx.stats.Split++
return n, next
}
// splitIndex finds the position where a page will fill a given threshold.
// It returns the index as well as the size of the first page.
// This is only be called from split().
func (n *node) splitIndex(threshold int) (index, sz int) {
sz = pageHeaderSize
// Loop until we only have the minimum number of keys required for the second page.
for i := 0; i < len(n.inodes)-minKeysPerPage; i++ {
index = i
inode := n.inodes[i]
elsize := n.pageElementSize() + len(inode.key) + len(inode.value)
// If we have at least the minimum number of keys and adding another
// node would put us over the threshold then exit and return.
if i >= minKeysPerPage && sz+elsize > threshold {
break
}
// Add the element size to the total size.
sz += elsize
}
return
}
// spill writes the nodes to dirty pages and splits nodes as it goes.
// Returns an error if dirty pages cannot be allocated.
func (n *node) spill() error {
var tx = n.bucket.tx
if n.spilled {
return nil
}
// Spill child nodes first. Child nodes can materialize sibling nodes in
// the case of split-merge so we cannot use a range loop. We have to check
// the children size on every loop iteration.
sort.Sort(n.children)
for i := 0; i < len(n.children); i++ {
if err := n.children[i].spill(); err != nil {
return err
}
}
// We no longer need the child list because it's only used for spill tracking.
n.children = nil
// Split nodes into appropriate sizes. The first node will always be n.
var nodes = n.split(tx.db.pageSize)
for _, node := range nodes {
// Add node's page to the freelist if it's not new.
if node.pgid > 0 {
tx.db.freelist.free(tx.meta.txid, tx.page(node.pgid))
node.pgid = 0
}
// Allocate contiguous space for the node.
p, err := tx.allocate((node.size() / tx.db.pageSize) + 1)
if err != nil {
return err
}
// Write the node.
if p.id >= tx.meta.pgid {
panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", p.id, tx.meta.pgid))
}
node.pgid = p.id
node.write(p)
node.spilled = true
// Insert into parent inodes.
if node.parent != nil {
var key = node.key
if key == nil {
key = node.inodes[0].key
}
node.parent.put(key, node.inodes[0].key, nil, node.pgid, 0)
node.key = node.inodes[0].key
_assert(len(node.key) > 0, "spill: zero-length node key")
}
// Update the statistics.
tx.stats.Spill++
}
// If the root node split and created a new root then we need to spill that
// as well. We'll clear out the children to make sure it doesn't try to respill.
if n.parent != nil && n.parent.pgid == 0 {
n.children = nil
return n.parent.spill()
}
return nil
}
// rebalance attempts to combine the node with sibling nodes if the node fill
// size is below a threshold or if there are not enough keys.
func (n *node) rebalance() {
if !n.unbalanced {
return
}
n.unbalanced = false
// Update statistics.
n.bucket.tx.stats.Rebalance++
// Ignore if node is above threshold (25%) and has enough keys.
var threshold = n.bucket.tx.db.pageSize / 4
if n.size() > threshold && len(n.inodes) > n.minKeys() {
return
}
// Root node has special handling.
if n.parent == nil {
// If root node is a branch and only has one node then collapse it.
if !n.isLeaf && len(n.inodes) == 1 {
// Move root's child up.
child := n.bucket.node(n.inodes[0].pgid, n)
n.isLeaf = child.isLeaf
n.inodes = child.inodes[:]
n.children = child.children
// Reparent all child nodes being moved.
for _, inode := range n.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent = n
}
}
// Remove old child.
child.parent = nil
delete(n.bucket.nodes, child.pgid)
child.free()
}
return
}
// If node has no keys then just remove it.
if n.numChildren() == 0 {
n.parent.del(n.key)
n.parent.removeChild(n)
delete(n.bucket.nodes, n.pgid)
n.free()
n.parent.rebalance()
return
}
_assert(n.parent.numChildren() > 1, "parent must have at least 2 children")
// Destination node is right sibling if idx == 0, otherwise left sibling.
var target *node
var useNextSibling = (n.parent.childIndex(n) == 0)
if useNextSibling {
target = n.nextSibling()
} else {
target = n.prevSibling()
}
// If both this node and the target node are too small then merge them.
if useNextSibling {
// Reparent all child nodes being moved.
for _, inode := range target.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent.removeChild(child)
child.parent = n
child.parent.children = append(child.parent.children, child)
}
}
// Copy over inodes from target and remove target.
n.inodes = append(n.inodes, target.inodes...)
n.parent.del(target.key)
n.parent.removeChild(target)
delete(n.bucket.nodes, target.pgid)
target.free()
} else {
// Reparent all child nodes being moved.
for _, inode := range n.inodes {
if child, ok := n.bucket.nodes[inode.pgid]; ok {
child.parent.removeChild(child)
child.parent = target
child.parent.children = append(child.parent.children, child)
}
}
// Copy over inodes to target and remove node.
target.inodes = append(target.inodes, n.inodes...)
n.parent.del(n.key)
n.parent.removeChild(n)
delete(n.bucket.nodes, n.pgid)
n.free()
}
// Either this node or the target node was deleted from the parent so rebalance it.
n.parent.rebalance()
}
// removes a node from the list of in-memory children.
// This does not affect the inodes.
func (n *node) removeChild(target *node) {
for i, child := range n.children {
if child == target {
n.children = append(n.children[:i], n.children[i+1:]...)
return
}
}
}
// dereference causes the node to copy all its inode key/value references to heap memory.
// This is required when the mmap is reallocated so inodes are not pointing to stale data.
func (n *node) dereference() {
if n.key != nil {
key := make([]byte, len(n.key))
copy(key, n.key)
n.key = key
_assert(n.pgid == 0 || len(n.key) > 0, "dereference: zero-length node key on existing node")
}
for i := range n.inodes {
inode := &n.inodes[i]
key := make([]byte, len(inode.key))
copy(key, inode.key)
inode.key = key
_assert(len(inode.key) > 0, "dereference: zero-length inode key")
value := make([]byte, len(inode.value))
copy(value, inode.value)
inode.value = value
}
// Recursively dereference children.
for _, child := range n.children {
child.dereference()
}
// Update statistics.
n.bucket.tx.stats.NodeDeref++
}
// free adds the node's underlying page to the freelist.
func (n *node) free() {
if n.pgid != 0 {
n.bucket.tx.db.freelist.free(n.bucket.tx.meta.txid, n.bucket.tx.page(n.pgid))
n.pgid = 0
}
}
// dump writes the contents of the node to STDERR for debugging purposes.
/*
func (n *node) dump() {
// Write node header.
var typ = "branch"
if n.isLeaf {
typ = "leaf"
}
warnf("[NODE %d {type=%s count=%d}]", n.pgid, typ, len(n.inodes))
// Write out abbreviated version of each item.
for _, item := range n.inodes {
if n.isLeaf {
if item.flags&bucketLeafFlag != 0 {
bucket := (*bucket)(unsafe.Pointer(&item.value[0]))
warnf("+L %08x -> (bucket root=%d)", trunc(item.key, 4), bucket.root)
} else {
warnf("+L %08x -> %08x", trunc(item.key, 4), trunc(item.value, 4))
}
} else {
warnf("+B %08x -> pgid=%d", trunc(item.key, 4), item.pgid)
}
}
warn("")
}
*/
type nodes []*node
func (s nodes) Len() int { return len(s) }
func (s nodes) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s nodes) Less(i, j int) bool { return bytes.Compare(s[i].inodes[0].key, s[j].inodes[0].key) == -1 }
// inode represents an internal node inside of a node.
// It can be used to point to elements in a page or point
// to an element which hasn't been added to a page yet.
type inode struct {
flags uint32
pgid pgid
key []byte
value []byte
}
type inodes []inode

197
vendor/github.com/boltdb/bolt/page.go generated vendored
View File

@ -1,197 +0,0 @@
package bolt
import (
"fmt"
"os"
"sort"
"unsafe"
)
const pageHeaderSize = int(unsafe.Offsetof(((*page)(nil)).ptr))
const minKeysPerPage = 2
const branchPageElementSize = int(unsafe.Sizeof(branchPageElement{}))
const leafPageElementSize = int(unsafe.Sizeof(leafPageElement{}))
const (
branchPageFlag = 0x01
leafPageFlag = 0x02
metaPageFlag = 0x04
freelistPageFlag = 0x10
)
const (
bucketLeafFlag = 0x01
)
type pgid uint64
type page struct {
id pgid
flags uint16
count uint16
overflow uint32
ptr uintptr
}
// typ returns a human readable page type string used for debugging.
func (p *page) typ() string {
if (p.flags & branchPageFlag) != 0 {
return "branch"
} else if (p.flags & leafPageFlag) != 0 {
return "leaf"
} else if (p.flags & metaPageFlag) != 0 {
return "meta"
} else if (p.flags & freelistPageFlag) != 0 {
return "freelist"
}
return fmt.Sprintf("unknown<%02x>", p.flags)
}
// meta returns a pointer to the metadata section of the page.
func (p *page) meta() *meta {
return (*meta)(unsafe.Pointer(&p.ptr))
}
// leafPageElement retrieves the leaf node by index
func (p *page) leafPageElement(index uint16) *leafPageElement {
n := &((*[0x7FFFFFF]leafPageElement)(unsafe.Pointer(&p.ptr)))[index]
return n
}
// leafPageElements retrieves a list of leaf nodes.
func (p *page) leafPageElements() []leafPageElement {
if p.count == 0 {
return nil
}
return ((*[0x7FFFFFF]leafPageElement)(unsafe.Pointer(&p.ptr)))[:]
}
// branchPageElement retrieves the branch node by index
func (p *page) branchPageElement(index uint16) *branchPageElement {
return &((*[0x7FFFFFF]branchPageElement)(unsafe.Pointer(&p.ptr)))[index]
}
// branchPageElements retrieves a list of branch nodes.
func (p *page) branchPageElements() []branchPageElement {
if p.count == 0 {
return nil
}
return ((*[0x7FFFFFF]branchPageElement)(unsafe.Pointer(&p.ptr)))[:]
}
// dump writes n bytes of the page to STDERR as hex output.
func (p *page) hexdump(n int) {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:n]
fmt.Fprintf(os.Stderr, "%x\n", buf)
}
type pages []*page
func (s pages) Len() int { return len(s) }
func (s pages) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s pages) Less(i, j int) bool { return s[i].id < s[j].id }
// branchPageElement represents a node on a branch page.
type branchPageElement struct {
pos uint32
ksize uint32
pgid pgid
}
// key returns a byte slice of the node key.
func (n *branchPageElement) key() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos]))[:n.ksize]
}
// leafPageElement represents a node on a leaf page.
type leafPageElement struct {
flags uint32
pos uint32
ksize uint32
vsize uint32
}
// key returns a byte slice of the node key.
func (n *leafPageElement) key() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos]))[:n.ksize:n.ksize]
}
// value returns a byte slice of the node value.
func (n *leafPageElement) value() []byte {
buf := (*[maxAllocSize]byte)(unsafe.Pointer(n))
return (*[maxAllocSize]byte)(unsafe.Pointer(&buf[n.pos+n.ksize]))[:n.vsize:n.vsize]
}
// PageInfo represents human readable information about a page.
type PageInfo struct {
ID int
Type string
Count int
OverflowCount int
}
type pgids []pgid
func (s pgids) Len() int { return len(s) }
func (s pgids) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s pgids) Less(i, j int) bool { return s[i] < s[j] }
// merge returns the sorted union of a and b.
func (a pgids) merge(b pgids) pgids {
// Return the opposite slice if one is nil.
if len(a) == 0 {
return b
}
if len(b) == 0 {
return a
}
merged := make(pgids, len(a)+len(b))
mergepgids(merged, a, b)
return merged
}
// mergepgids copies the sorted union of a and b into dst.
// If dst is too small, it panics.
func mergepgids(dst, a, b pgids) {
if len(dst) < len(a)+len(b) {
panic(fmt.Errorf("mergepgids bad len %d < %d + %d", len(dst), len(a), len(b)))
}
// Copy in the opposite slice if one is nil.
if len(a) == 0 {
copy(dst, b)
return
}
if len(b) == 0 {
copy(dst, a)
return
}
// Merged will hold all elements from both lists.
merged := dst[:0]
// Assign lead to the slice with a lower starting value, follow to the higher value.
lead, follow := a, b
if b[0] < a[0] {
lead, follow = b, a
}
// Continue while there are elements in the lead.
for len(lead) > 0 {
// Merge largest prefix of lead that is ahead of follow[0].
n := sort.Search(len(lead), func(i int) bool { return lead[i] > follow[0] })
merged = append(merged, lead[:n]...)
if n >= len(lead) {
break
}
// Swap lead and follow.
lead, follow = follow, lead[n:]
}
// Append what's left in follow.
_ = append(merged, follow...)
}

684
vendor/github.com/boltdb/bolt/tx.go generated vendored
View File

@ -1,684 +0,0 @@
package bolt
import (
"fmt"
"io"
"os"
"sort"
"strings"
"time"
"unsafe"
)
// txid represents the internal transaction identifier.
type txid uint64
// Tx represents a read-only or read/write transaction on the database.
// Read-only transactions can be used for retrieving values for keys and creating cursors.
// Read/write transactions can create and remove buckets and create and remove keys.
//
// IMPORTANT: You must commit or rollback transactions when you are done with
// them. Pages can not be reclaimed by the writer until no more transactions
// are using them. A long running read transaction can cause the database to
// quickly grow.
type Tx struct {
writable bool
managed bool
db *DB
meta *meta
root Bucket
pages map[pgid]*page
stats TxStats
commitHandlers []func()
// WriteFlag specifies the flag for write-related methods like WriteTo().
// Tx opens the database file with the specified flag to copy the data.
//
// By default, the flag is unset, which works well for mostly in-memory
// workloads. For databases that are much larger than available RAM,
// set the flag to syscall.O_DIRECT to avoid trashing the page cache.
WriteFlag int
}
// init initializes the transaction.
func (tx *Tx) init(db *DB) {
tx.db = db
tx.pages = nil
// Copy the meta page since it can be changed by the writer.
tx.meta = &meta{}
db.meta().copy(tx.meta)
// Copy over the root bucket.
tx.root = newBucket(tx)
tx.root.bucket = &bucket{}
*tx.root.bucket = tx.meta.root
// Increment the transaction id and add a page cache for writable transactions.
if tx.writable {
tx.pages = make(map[pgid]*page)
tx.meta.txid += txid(1)
}
}
// ID returns the transaction id.
func (tx *Tx) ID() int {
return int(tx.meta.txid)
}
// DB returns a reference to the database that created the transaction.
func (tx *Tx) DB() *DB {
return tx.db
}
// Size returns current database size in bytes as seen by this transaction.
func (tx *Tx) Size() int64 {
return int64(tx.meta.pgid) * int64(tx.db.pageSize)
}
// Writable returns whether the transaction can perform write operations.
func (tx *Tx) Writable() bool {
return tx.writable
}
// Cursor creates a cursor associated with the root bucket.
// All items in the cursor will return a nil value because all root bucket keys point to buckets.
// The cursor is only valid as long as the transaction is open.
// Do not use a cursor after the transaction is closed.
func (tx *Tx) Cursor() *Cursor {
return tx.root.Cursor()
}
// Stats retrieves a copy of the current transaction statistics.
func (tx *Tx) Stats() TxStats {
return tx.stats
}
// Bucket retrieves a bucket by name.
// Returns nil if the bucket does not exist.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) Bucket(name []byte) *Bucket {
return tx.root.Bucket(name)
}
// CreateBucket creates a new bucket.
// Returns an error if the bucket already exists, if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucket(name []byte) (*Bucket, error) {
return tx.root.CreateBucket(name)
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucketIfNotExists(name []byte) (*Bucket, error) {
return tx.root.CreateBucketIfNotExists(name)
}
// DeleteBucket deletes a bucket.
// Returns an error if the bucket cannot be found or if the key represents a non-bucket value.
func (tx *Tx) DeleteBucket(name []byte) error {
return tx.root.DeleteBucket(name)
}
// ForEach executes a function for each bucket in the root.
// If the provided function returns an error then the iteration is stopped and
// the error is returned to the caller.
func (tx *Tx) ForEach(fn func(name []byte, b *Bucket) error) error {
return tx.root.ForEach(func(k, v []byte) error {
if err := fn(k, tx.root.Bucket(k)); err != nil {
return err
}
return nil
})
}
// OnCommit adds a handler function to be executed after the transaction successfully commits.
func (tx *Tx) OnCommit(fn func()) {
tx.commitHandlers = append(tx.commitHandlers, fn)
}
// Commit writes all changes to disk and updates the meta page.
// Returns an error if a disk write error occurs, or if Commit is
// called on a read-only transaction.
func (tx *Tx) Commit() error {
_assert(!tx.managed, "managed tx commit not allowed")
if tx.db == nil {
return ErrTxClosed
} else if !tx.writable {
return ErrTxNotWritable
}
// TODO(benbjohnson): Use vectorized I/O to write out dirty pages.
// Rebalance nodes which have had deletions.
var startTime = time.Now()
tx.root.rebalance()
if tx.stats.Rebalance > 0 {
tx.stats.RebalanceTime += time.Since(startTime)
}
// spill data onto dirty pages.
startTime = time.Now()
if err := tx.root.spill(); err != nil {
tx.rollback()
return err
}
tx.stats.SpillTime += time.Since(startTime)
// Free the old root bucket.
tx.meta.root.root = tx.root.root
opgid := tx.meta.pgid
// Free the freelist and allocate new pages for it. This will overestimate
// the size of the freelist but not underestimate the size (which would be bad).
tx.db.freelist.free(tx.meta.txid, tx.db.page(tx.meta.freelist))
p, err := tx.allocate((tx.db.freelist.size() / tx.db.pageSize) + 1)
if err != nil {
tx.rollback()
return err
}
if err := tx.db.freelist.write(p); err != nil {
tx.rollback()
return err
}
tx.meta.freelist = p.id
// If the high water mark has moved up then attempt to grow the database.
if tx.meta.pgid > opgid {
if err := tx.db.grow(int(tx.meta.pgid+1) * tx.db.pageSize); err != nil {
tx.rollback()
return err
}
}
// Write dirty pages to disk.
startTime = time.Now()
if err := tx.write(); err != nil {
tx.rollback()
return err
}
// If strict mode is enabled then perform a consistency check.
// Only the first consistency error is reported in the panic.
if tx.db.StrictMode {
ch := tx.Check()
var errs []string
for {
err, ok := <-ch
if !ok {
break
}
errs = append(errs, err.Error())
}
if len(errs) > 0 {
panic("check fail: " + strings.Join(errs, "\n"))
}
}
// Write meta to disk.
if err := tx.writeMeta(); err != nil {
tx.rollback()
return err
}
tx.stats.WriteTime += time.Since(startTime)
// Finalize the transaction.
tx.close()
// Execute commit handlers now that the locks have been removed.
for _, fn := range tx.commitHandlers {
fn()
}
return nil
}
// Rollback closes the transaction and ignores all previous updates. Read-only
// transactions must be rolled back and not committed.
func (tx *Tx) Rollback() error {
_assert(!tx.managed, "managed tx rollback not allowed")
if tx.db == nil {
return ErrTxClosed
}
tx.rollback()
return nil
}
func (tx *Tx) rollback() {
if tx.db == nil {
return
}
if tx.writable {
tx.db.freelist.rollback(tx.meta.txid)
tx.db.freelist.reload(tx.db.page(tx.db.meta().freelist))
}
tx.close()
}
func (tx *Tx) close() {
if tx.db == nil {
return
}
if tx.writable {
// Grab freelist stats.
var freelistFreeN = tx.db.freelist.free_count()
var freelistPendingN = tx.db.freelist.pending_count()
var freelistAlloc = tx.db.freelist.size()
// Remove transaction ref & writer lock.
tx.db.rwtx = nil
tx.db.rwlock.Unlock()
// Merge statistics.
tx.db.statlock.Lock()
tx.db.stats.FreePageN = freelistFreeN
tx.db.stats.PendingPageN = freelistPendingN
tx.db.stats.FreeAlloc = (freelistFreeN + freelistPendingN) * tx.db.pageSize
tx.db.stats.FreelistInuse = freelistAlloc
tx.db.stats.TxStats.add(&tx.stats)
tx.db.statlock.Unlock()
} else {
tx.db.removeTx(tx)
}
// Clear all references.
tx.db = nil
tx.meta = nil
tx.root = Bucket{tx: tx}
tx.pages = nil
}
// Copy writes the entire database to a writer.
// This function exists for backwards compatibility. Use WriteTo() instead.
func (tx *Tx) Copy(w io.Writer) error {
_, err := tx.WriteTo(w)
return err
}
// WriteTo writes the entire database to a writer.
// If err == nil then exactly tx.Size() bytes will be written into the writer.
func (tx *Tx) WriteTo(w io.Writer) (n int64, err error) {
// Attempt to open reader with WriteFlag
f, err := os.OpenFile(tx.db.path, os.O_RDONLY|tx.WriteFlag, 0)
if err != nil {
return 0, err
}
defer func() { _ = f.Close() }()
// Generate a meta page. We use the same page data for both meta pages.
buf := make([]byte, tx.db.pageSize)
page := (*page)(unsafe.Pointer(&buf[0]))
page.flags = metaPageFlag
*page.meta() = *tx.meta
// Write meta 0.
page.id = 0
page.meta().checksum = page.meta().sum64()
nn, err := w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 0 copy: %s", err)
}
// Write meta 1 with a lower transaction id.
page.id = 1
page.meta().txid -= 1
page.meta().checksum = page.meta().sum64()
nn, err = w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 1 copy: %s", err)
}
// Move past the meta pages in the file.
if _, err := f.Seek(int64(tx.db.pageSize*2), os.SEEK_SET); err != nil {
return n, fmt.Errorf("seek: %s", err)
}
// Copy data pages.
wn, err := io.CopyN(w, f, tx.Size()-int64(tx.db.pageSize*2))
n += wn
if err != nil {
return n, err
}
return n, f.Close()
}
// CopyFile copies the entire database to file at the given path.
// A reader transaction is maintained during the copy so it is safe to continue
// using the database while a copy is in progress.
func (tx *Tx) CopyFile(path string, mode os.FileMode) error {
f, err := os.OpenFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, mode)
if err != nil {
return err
}
err = tx.Copy(f)
if err != nil {
_ = f.Close()
return err
}
return f.Close()
}
// Check performs several consistency checks on the database for this transaction.
// An error is returned if any inconsistency is found.
//
// It can be safely run concurrently on a writable transaction. However, this
// incurs a high cost for large databases and databases with a lot of subbuckets
// because of caching. This overhead can be removed if running on a read-only
// transaction, however, it is not safe to execute other writer transactions at
// the same time.
func (tx *Tx) Check() <-chan error {
ch := make(chan error)
go tx.check(ch)
return ch
}
func (tx *Tx) check(ch chan error) {
// Check if any pages are double freed.
freed := make(map[pgid]bool)
all := make([]pgid, tx.db.freelist.count())
tx.db.freelist.copyall(all)
for _, id := range all {
if freed[id] {
ch <- fmt.Errorf("page %d: already freed", id)
}
freed[id] = true
}
// Track every reachable page.
reachable := make(map[pgid]*page)
reachable[0] = tx.page(0) // meta0
reachable[1] = tx.page(1) // meta1
for i := uint32(0); i <= tx.page(tx.meta.freelist).overflow; i++ {
reachable[tx.meta.freelist+pgid(i)] = tx.page(tx.meta.freelist)
}
// Recursively check buckets.
tx.checkBucket(&tx.root, reachable, freed, ch)
// Ensure all pages below high water mark are either reachable or freed.
for i := pgid(0); i < tx.meta.pgid; i++ {
_, isReachable := reachable[i]
if !isReachable && !freed[i] {
ch <- fmt.Errorf("page %d: unreachable unfreed", int(i))
}
}
// Close the channel to signal completion.
close(ch)
}
func (tx *Tx) checkBucket(b *Bucket, reachable map[pgid]*page, freed map[pgid]bool, ch chan error) {
// Ignore inline buckets.
if b.root == 0 {
return
}
// Check every page used by this bucket.
b.tx.forEachPage(b.root, 0, func(p *page, _ int) {
if p.id > tx.meta.pgid {
ch <- fmt.Errorf("page %d: out of bounds: %d", int(p.id), int(b.tx.meta.pgid))
}
// Ensure each page is only referenced once.
for i := pgid(0); i <= pgid(p.overflow); i++ {
var id = p.id + i
if _, ok := reachable[id]; ok {
ch <- fmt.Errorf("page %d: multiple references", int(id))
}
reachable[id] = p
}
// We should only encounter un-freed leaf and branch pages.
if freed[p.id] {
ch <- fmt.Errorf("page %d: reachable freed", int(p.id))
} else if (p.flags&branchPageFlag) == 0 && (p.flags&leafPageFlag) == 0 {
ch <- fmt.Errorf("page %d: invalid type: %s", int(p.id), p.typ())
}
})
// Check each bucket within this bucket.
_ = b.ForEach(func(k, v []byte) error {
if child := b.Bucket(k); child != nil {
tx.checkBucket(child, reachable, freed, ch)
}
return nil
})
}
// allocate returns a contiguous block of memory starting at a given page.
func (tx *Tx) allocate(count int) (*page, error) {
p, err := tx.db.allocate(count)
if err != nil {
return nil, err
}
// Save to our page cache.
tx.pages[p.id] = p
// Update statistics.
tx.stats.PageCount++
tx.stats.PageAlloc += count * tx.db.pageSize
return p, nil
}
// write writes any dirty pages to disk.
func (tx *Tx) write() error {
// Sort pages by id.
pages := make(pages, 0, len(tx.pages))
for _, p := range tx.pages {
pages = append(pages, p)
}
// Clear out page cache early.
tx.pages = make(map[pgid]*page)
sort.Sort(pages)
// Write pages to disk in order.
for _, p := range pages {
size := (int(p.overflow) + 1) * tx.db.pageSize
offset := int64(p.id) * int64(tx.db.pageSize)
// Write out page in "max allocation" sized chunks.
ptr := (*[maxAllocSize]byte)(unsafe.Pointer(p))
for {
// Limit our write to our max allocation size.
sz := size
if sz > maxAllocSize-1 {
sz = maxAllocSize - 1
}
// Write chunk to disk.
buf := ptr[:sz]
if _, err := tx.db.ops.writeAt(buf, offset); err != nil {
return err
}
// Update statistics.
tx.stats.Write++
// Exit inner for loop if we've written all the chunks.
size -= sz
if size == 0 {
break
}
// Otherwise move offset forward and move pointer to next chunk.
offset += int64(sz)
ptr = (*[maxAllocSize]byte)(unsafe.Pointer(&ptr[sz]))
}
}
// Ignore file sync if flag is set on DB.
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Put small pages back to page pool.
for _, p := range pages {
// Ignore page sizes over 1 page.
// These are allocated using make() instead of the page pool.
if int(p.overflow) != 0 {
continue
}
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:tx.db.pageSize]
// See https://go.googlesource.com/go/+/f03c9202c43e0abb130669852082117ca50aa9b1
for i := range buf {
buf[i] = 0
}
tx.db.pagePool.Put(buf)
}
return nil
}
// writeMeta writes the meta to the disk.
func (tx *Tx) writeMeta() error {
// Create a temporary buffer for the meta page.
buf := make([]byte, tx.db.pageSize)
p := tx.db.pageInBuffer(buf, 0)
tx.meta.write(p)
// Write the meta page to file.
if _, err := tx.db.ops.writeAt(buf, int64(p.id)*int64(tx.db.pageSize)); err != nil {
return err
}
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Update statistics.
tx.stats.Write++
return nil
}
// page returns a reference to the page with a given id.
// If page has been written to then a temporary buffered page is returned.
func (tx *Tx) page(id pgid) *page {
// Check the dirty pages first.
if tx.pages != nil {
if p, ok := tx.pages[id]; ok {
return p
}
}
// Otherwise return directly from the mmap.
return tx.db.page(id)
}
// forEachPage iterates over every page within a given page and executes a function.
func (tx *Tx) forEachPage(pgid pgid, depth int, fn func(*page, int)) {
p := tx.page(pgid)
// Execute function.
fn(p, depth)
// Recursively loop over children.
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
tx.forEachPage(elem.pgid, depth+1, fn)
}
}
}
// Page returns page information for a given page number.
// This is only safe for concurrent use when used by a writable transaction.
func (tx *Tx) Page(id int) (*PageInfo, error) {
if tx.db == nil {
return nil, ErrTxClosed
} else if pgid(id) >= tx.meta.pgid {
return nil, nil
}
// Build the page info.
p := tx.db.page(pgid(id))
info := &PageInfo{
ID: id,
Count: int(p.count),
OverflowCount: int(p.overflow),
}
// Determine the type (or if it's free).
if tx.db.freelist.freed(pgid(id)) {
info.Type = "free"
} else {
info.Type = p.typ()
}
return info, nil
}
// TxStats represents statistics about the actions performed by the transaction.
type TxStats struct {
// Page statistics.
PageCount int // number of page allocations
PageAlloc int // total bytes allocated
// Cursor statistics.
CursorCount int // number of cursors created
// Node statistics
NodeCount int // number of node allocations
NodeDeref int // number of node dereferences
// Rebalance statistics.
Rebalance int // number of node rebalances
RebalanceTime time.Duration // total time spent rebalancing
// Split/Spill statistics.
Split int // number of nodes split
Spill int // number of nodes spilled
SpillTime time.Duration // total time spent spilling
// Write statistics.
Write int // number of writes performed
WriteTime time.Duration // total time spent writing to disk
}
func (s *TxStats) add(other *TxStats) {
s.PageCount += other.PageCount
s.PageAlloc += other.PageAlloc
s.CursorCount += other.CursorCount
s.NodeCount += other.NodeCount
s.NodeDeref += other.NodeDeref
s.Rebalance += other.Rebalance
s.RebalanceTime += other.RebalanceTime
s.Split += other.Split
s.Spill += other.Spill
s.SpillTime += other.SpillTime
s.Write += other.Write
s.WriteTime += other.WriteTime
}
// Sub calculates and returns the difference between two sets of transaction stats.
// This is useful when obtaining stats at two different points and time and
// you need the performance counters that occurred within that time span.
func (s *TxStats) Sub(other *TxStats) TxStats {
var diff TxStats
diff.PageCount = s.PageCount - other.PageCount
diff.PageAlloc = s.PageAlloc - other.PageAlloc
diff.CursorCount = s.CursorCount - other.CursorCount
diff.NodeCount = s.NodeCount - other.NodeCount
diff.NodeDeref = s.NodeDeref - other.NodeDeref
diff.Rebalance = s.Rebalance - other.Rebalance
diff.RebalanceTime = s.RebalanceTime - other.RebalanceTime
diff.Split = s.Split - other.Split
diff.Spill = s.Spill - other.Spill
diff.SpillTime = s.SpillTime - other.SpillTime
diff.Write = s.Write - other.Write
diff.WriteTime = s.WriteTime - other.WriteTime
return diff
}

View File

@ -1,22 +0,0 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe

View File

@ -1,4 +0,0 @@
boltease
========
A library for easing the use of bolt databases

View File

@ -1,400 +0,0 @@
package boltease
import (
"fmt"
"os"
"strconv"
"strings"
"time"
"github.com/boltdb/bolt"
)
// This is a library for easing the use of bolt dbs
// DB is a struct for accomplishing this
type DB struct {
filename string
boltDB *bolt.DB
mode os.FileMode
options *bolt.Options
dbIsOpen bool
}
// Create makes sure we can get open the file and returns the DB object
func Create(fn string, m os.FileMode, opts *bolt.Options) (*DB, error) {
var err error
b := DB{filename: fn, mode: m, options: opts}
b.boltDB, err = bolt.Open(fn, m, opts)
if err != nil {
return nil, err
}
defer b.boltDB.Close()
return &b, nil
}
func (b *DB) OpenDB() error {
if b.dbIsOpen {
// DB is already open, that's fine.
return nil
}
var err error
if b.boltDB, err = bolt.Open(b.filename, b.mode, b.options); err != nil {
return err
}
b.dbIsOpen = true
return err
}
func (b *DB) CloseDB() error {
if !b.dbIsOpen {
// DB is already closed, that's fine.
return nil
}
var err error
if err = b.boltDB.Close(); err != nil {
return err
}
b.dbIsOpen = false
return err
}
// MkBucketPath builds all buckets in the string slice
func (b *DB) MkBucketPath(path []string) error {
var err error
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
var err error
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
// Create it
bkt, err = tx.CreateBucket([]byte(path[0]))
if err != nil {
// error creating
return err
}
}
if len(path) > 1 {
path = path[1:]
for i := range path {
nextBkt := bkt.Bucket([]byte(path[i]))
if nextBkt == nil {
// Create it
nextBkt, err = bkt.CreateBucket([]byte(path[i]))
if err != nil {
return err
}
}
bkt = nextBkt
}
}
return err
})
return err
}
// GetValue returns the value at path
// path is a slice of strings
// key is the key to get
func (b *DB) GetValue(path []string, key string) (string, error) {
var err error
var ret string
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return ret, err
}
defer b.CloseDB()
}
err = b.boltDB.View(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
for idx := 1; idx < len(path); idx++ {
bkt = bkt.Bucket([]byte(path[idx]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], "/"))
}
}
// newBkt should have the last bucket in the path
ret = string(bkt.Get([]byte(key)))
return nil
})
return ret, err
}
// SetValue sets the value of key at path to val
// path is a slice of tokens
func (b *DB) SetValue(path []string, key, val string) error {
var err error
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return err
}
defer b.CloseDB()
}
err = b.MkBucketPath(path)
if err != nil {
return err
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
for idx := 1; idx < len(path); idx++ {
bkt, err = bkt.CreateBucketIfNotExists([]byte(path[idx]))
if err != nil {
return err
}
}
// bkt should have the last bucket in the path
return bkt.Put([]byte(key), []byte(val))
})
return err
}
// GetInt returns the value at path
// If the value cannot be parsed as an int, error
func (b *DB) GetInt(path []string, key string) (int, error) {
var ret int
r, err := b.GetValue(path, key)
if err == nil {
ret, err = strconv.Atoi(r)
}
return ret, err
}
// SetInt Sets an integer value
func (b *DB) SetInt(path []string, key string, val int) error {
return b.SetValue(path, key, strconv.Itoa(val))
}
// GetBool returns the value at 'path'
// If the value cannot be parsed as a bool, error
// We check 'true/false' and '1/0', else error
func (b *DB) GetBool(path []string, key string) (bool, error) {
var ret bool
r, err := b.GetValue(path, key)
if err == nil {
if r == "true" || r == "1" {
ret = true
} else if r != "false" && r != "0" {
err = fmt.Errorf("Cannot parse as a boolean")
}
}
return ret, err
}
// SetBool Sets a boolean value
func (b *DB) SetBool(path []string, key string, val bool) error {
if val {
return b.SetValue(path, key, "true")
}
return b.SetValue(path, key, "false")
}
// GetTimestamp returns the value at 'path'
// If the value cannot be parsed as a RFC3339, error
func (b *DB) GetTimestamp(path []string, key string) (time.Time, error) {
r, err := b.GetValue(path, key)
if err == nil {
return time.Parse(time.RFC3339, r)
}
return time.Unix(0, 0), err
}
// SetTimestamp saves a timestamp into the db
func (b *DB) SetTimestamp(path []string, key string, val time.Time) error {
return b.SetValue(path, key, val.Format(time.RFC3339))
}
// GetBucketList returns a list of all sub-buckets at path
func (b *DB) GetBucketList(path []string) ([]string, error) {
var err error
var ret []string
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return ret, err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
var berr error
if len(path) > 1 {
for idx := 1; idx < len(path); idx++ {
bkt = bkt.Bucket([]byte(path[idx]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], " / "))
}
}
}
// bkt should have the last bucket in the path
berr = bkt.ForEach(func(k, v []byte) error {
if v == nil {
// Must be a bucket
ret = append(ret, string(k))
}
return nil
})
return berr
})
return ret, err
}
// GetKeyList returns a list of all keys at path
func (b *DB) GetKeyList(path []string) ([]string, error) {
var err error
var ret []string
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return ret, err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
var berr error
if len(path) > 1 {
for idx := 1; idx < len(path); idx++ {
bkt = bkt.Bucket([]byte(path[idx]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], " / "))
}
}
}
// bkt should have the last bucket in the path
berr = bkt.ForEach(func(k, v []byte) error {
if v != nil {
// Must be a key
ret = append(ret, string(k))
}
return nil
})
return berr
})
return ret, err
}
// DeletePair deletes the pair with key at path
func (b *DB) DeletePair(path []string, key string) error {
var err error
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
if len(path) > 1 {
var newBkt *bolt.Bucket
for idx := 1; idx < len(path); idx++ {
newBkt = bkt.Bucket([]byte(path[idx]))
if newBkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], "/"))
}
}
bkt = newBkt
}
// bkt should have the last bucket in the path
// Test to make sure that key is a pair, if so, delete it
if tst := bkt.Bucket([]byte(key)); tst == nil {
return bkt.Delete([]byte(key))
}
return nil
})
return err
}
// DeleteBucket deletes the bucket key at path
func (b *DB) DeleteBucket(path []string, key string) error {
var err error
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
for idx := 1; idx < len(path); idx++ {
bkt = bkt.Bucket([]byte(path[idx]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], "/"))
}
}
// bkt should have the last bucket in the path
// Test to make sure that key is a bucket, if so, delete it
if tst := bkt.Bucket([]byte(key)); tst != nil {
return bkt.DeleteBucket([]byte(key))
}
return nil
})
return err
}
// GetValueList returns a string slice of all values in the bucket at path
func (b *DB) GetValueList(path []string) ([]string, error) {
var err error
var ret []string
if !b.dbIsOpen {
if err = b.OpenDB(); err != nil {
return ret, err
}
defer b.CloseDB()
}
err = b.boltDB.Update(func(tx *bolt.Tx) error {
bkt := tx.Bucket([]byte(path[0]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + path[0])
}
var berr error
if len(path) > 1 {
for idx := 1; idx < len(path); idx++ {
bkt = bkt.Bucket([]byte(path[idx]))
if bkt == nil {
return fmt.Errorf("Couldn't find bucket " + strings.Join(path[:idx], " / "))
}
}
}
// bkt should have the last bucket in the path
berr = bkt.ForEach(func(k, v []byte) error {
if v != nil {
// Must be a key
ret = append(ret, string(v))
}
return nil
})
return berr
})
return ret, err
}

View File

@ -1,24 +0,0 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof

View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2016 Brian Buller
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,3 +0,0 @@
# user-config
A go library for easily managing config files/directories in your XDGConfig directory

View File

@ -1,108 +0,0 @@
package userConfig
import (
"bytes"
"errors"
"fmt"
"io/ioutil"
"os"
"strings"
)
// AddonConfig is an additional ConfigFile
type AddonConfig struct {
Name string `toml:"-"`
Path string `toml:"-"`
Values map[string]map[string]string `toml:"-"`
}
// NewAddonConfig generates a Additional Config struct
func NewAddonConfig(name, path string) (*AddonConfig, error) {
af := &AddonConfig{Name: name, Path: path}
af.Values = make(map[string]map[string]string)
// Check if file exists
//var f os.FileInfo
var err error
if _, err = os.Stat(af.GetFullPath()); os.IsNotExist(err) {
if err = af.Save(); err != nil {
return af, err
}
}
if err := af.Load(); err != nil {
return af, err
}
return af, nil
}
/** START of ConfigFile Interface Implementation **/
// GetName returns the name of this config file
func (af *AddonConfig) GetName() string {
return af.Name
}
// GetPath returns the path of this config file
func (af *AddonConfig) GetPath() string {
return af.Path
}
// Load loads config files into the config
func (af *AddonConfig) Load() error {
if strings.TrimSpace(af.Name) == "" || strings.TrimSpace(af.Path) == "" {
return errors.New("Invalid ConfigFile Name: " + af.GetFullPath())
}
// Config files end with .toml
tomlData, err := ioutil.ReadFile(af.GetFullPath())
if err != nil {
return err
}
fmt.Println(tomlData)
// TODO: Figure out loading this into the struct
//if _, err := toml.Decode(string(tomlData), &af); err != nil {
// return err
//}
return nil
}
// Save writes the config to file(s)
func (af *AddonConfig) Save() error {
buf := new(bytes.Buffer)
// TODO: Figure out writing struct to buf
//if err := toml.NewEncoder(buf).Encode(af); err != nil {
// return err
//}
return ioutil.WriteFile(af.GetFullPath(), buf.Bytes(), 0644)
}
// Set sets a key/value pair in af, if unable to save, revert to old value
// (and return the error)
func (af *AddonConfig) Set(category, k, v string) error {
if _, ok := af.Values[category]; !ok {
af.Values[category] = make(map[string]string)
}
oldVal := af.Values[category][k]
af.Values[category][k] = v
if err := af.Save(); err != nil {
af.Values[category][k] = oldVal
return err
}
return nil
}
// Get gets a key/value pair from af
func (af *AddonConfig) Get(category, k string) string {
if _, ok := af.Values[category]; !ok {
return ""
}
return af.Values[category][k]
}
// GetFullPath returns the full path & filename to the config file
func (af *AddonConfig) GetFullPath() string {
return af.Path + "/" + af.Name + ".toml"
}
/** END of ConfigFile Interface Implementation **/

View File

@ -1,147 +0,0 @@
// Package userConfig eases the use of config files in a user's home directory
package userConfig
import (
"errors"
"os"
"strings"
"time"
"github.com/casimir/xdg-go"
)
// Config is a stuct for managing the config
type Config struct {
name string
generalConfig *GeneralConfig
}
// NewConfig generates a Config struct
func NewConfig(name string) (*Config, error) {
c := &Config{name: name}
if err := c.Load(); err != nil {
return c, err
}
return c, nil
}
// GetKeyList at the config level returns all keys in the <c.name>.toml file
func (c *Config) GetKeyList() []string {
return c.generalConfig.GetKeyList()
}
// Set at the config level sets a value in the <c.name>.toml file
func (c *Config) Set(k, v string) error {
return c.generalConfig.Set(k, v)
}
// SetBytes at the config level sets a value in the <c.name>.toml file
func (c *Config) SetBytes(k string, v []byte) error {
return c.generalConfig.SetBytes(k, v)
}
// SetInt saves an integer (as a string) in the <c.name>.toml file
func (c *Config) SetInt(k string, v int) error {
return c.generalConfig.SetInt(k, v)
}
// SetDateTime saves a time.Time (as a string) in the <c.name>.toml file
func (c *Config) SetDateTime(k string, v time.Time) error {
return c.generalConfig.SetDateTime(k, v)
}
// SetArray saves a string slice in the <c.name>.toml file
func (c *Config) SetArray(k string, v []string) error {
return c.generalConfig.SetArray(k, v)
}
// Get at the config level retrieves a value from the <c.name>.toml file
func (c *Config) Get(k string) string {
return c.generalConfig.Get(k)
}
// GetBytes at the config level retrieves a value from the <c.name>.toml file
// and returns it as a byte slice
func (c *Config) GetBytes(k string) []byte {
return c.generalConfig.GetBytes(k)
}
// GetInt at the config level retrieves a value from the <c.name>.toml file
// and returns it as an integer (or an error if conversion fails)
func (c *Config) GetInt(k string) (int, error) {
return c.generalConfig.GetInt(k)
}
// GetDateTime at the config level retrieves a value from the <c.name>.toml file
func (c *Config) GetDateTime(k string) (time.Time, error) {
return c.generalConfig.GetDateTime(k)
}
func (c *Config) GetArray(k string) ([]string, error) {
return c.generalConfig.GetArray(k)
}
// DeleteKey at the config level removes a key from the <c.name>.toml file
func (c *Config) DeleteKey(k string) error {
return c.generalConfig.DeleteKey(k)
}
// GetConfigPath just returns the config path
func (c *Config) GetConfigPath() string {
return c.generalConfig.Path
}
// Load loads config files into the config
func (c *Config) Load() error {
var err error
if strings.TrimSpace(c.name) == "" {
return errors.New("Invalid Config Name: " + c.name)
}
var cfgPath string
app := xdg.App{Name: c.name}
cfgPath = app.ConfigPath("")
if cfgPath != "" {
if err = c.verifyOrCreateDirectory(cfgPath); err != nil {
return err
}
}
// Load general config
if c.generalConfig, err = NewGeneralConfig(c.name, cfgPath); err != nil {
return err
}
return nil
}
// Save writes the config to file(s)
func (c *Config) Save() error {
if c.generalConfig == nil {
return errors.New("Bad setup.")
}
return c.generalConfig.Save()
}
// verifyOrCreateDirectory is a helper function for building an
// individual directory
func (c *Config) verifyOrCreateDirectory(path string) error {
var tstDir *os.File
var tstDirInfo os.FileInfo
var err error
if tstDir, err = os.Open(path); err != nil {
if err = os.Mkdir(path, 0755); err != nil {
return err
}
if tstDir, err = os.Open(path); err != nil {
return err
}
}
if tstDirInfo, err = tstDir.Stat(); err != nil {
return err
}
if !tstDirInfo.IsDir() {
return errors.New(path + " exists and is not a directory")
}
// We were able to open the path and it was a directory
return nil
}

View File

@ -1,154 +0,0 @@
// Package userConfig eases the use of config files in a user's home directory
package userConfig
import (
"bytes"
"encoding/json"
"errors"
"io/ioutil"
"os"
"strconv"
"strings"
"time"
"github.com/BurntSushi/toml"
)
// GeneralConfig is the basic config structure
// All configs make with package userConfig will have this file
type GeneralConfig struct {
Name string `toml:"-"`
Path string `toml:"-"`
ConfigFiles []string `toml:"additional_config"`
RawFiles []string `toml:"raw_files"`
Values map[string]string `toml:"general"`
}
// NewGeneralConfig generates a General Config struct
func NewGeneralConfig(name, path string) (*GeneralConfig, error) {
gf := &GeneralConfig{Name: name, Path: path}
gf.ConfigFiles = []string{}
gf.RawFiles = []string{}
gf.Values = make(map[string]string)
if err := gf.Load(); err != nil {
return gf, err
}
return gf, nil
}
// Load loads config files into the config
func (gf *GeneralConfig) Load() error {
if strings.TrimSpace(gf.Name) == "" || strings.TrimSpace(gf.Path) == "" {
return errors.New("Invalid ConfigFile Name: " + gf.Path + string(os.PathSeparator) + gf.Name)
}
// Config files end with .toml
cfgPath := gf.Path + string(os.PathSeparator) + gf.Name + ".toml"
tomlData, err := ioutil.ReadFile(cfgPath)
if err != nil {
// Couldn't find the file, save a new one
if err = gf.Save(); err != nil {
return err
}
}
if _, err := toml.Decode(string(tomlData), &gf); err != nil {
return err
}
return nil
}
// Save writes the config to file(s)
func (gf *GeneralConfig) Save() error {
buf := new(bytes.Buffer)
cfgPath := gf.Path + string(os.PathSeparator) + gf.Name + ".toml"
if err := toml.NewEncoder(buf).Encode(gf); err != nil {
return err
}
return ioutil.WriteFile(cfgPath, buf.Bytes(), 0644)
}
// GetKeyList returns a list of all keys in the config file
func (gf *GeneralConfig) GetKeyList() []string {
var ret []string
for k, _ := range gf.Values {
ret = append(ret, k)
}
return ret
}
// Set sets a key/value pair in gf, if unable to save, revert to old value
// (and return the error)
func (gf *GeneralConfig) Set(k, v string) error {
oldVal := gf.Values[k]
gf.Values[k] = v
if err := gf.Save(); err != nil {
gf.Values[k] = oldVal
return err
}
return nil
}
// SetBytes at the config level sets a value in the <c.name>.toml file
func (gf *GeneralConfig) SetBytes(k string, v []byte) error {
return gf.Set(k, string(v))
}
// SetInt sets an integer value (as a string) in the config file
func (gf *GeneralConfig) SetInt(k string, v int) error {
return gf.Set(k, strconv.Itoa(v))
}
// SetDateTime sets a DateTime value (as a string) in the config file
func (gf *GeneralConfig) SetDateTime(k string, v time.Time) error {
return gf.Set(k, v.Format(time.RFC3339))
}
// SetArray sets a string slice value (as a string) in the config file
func (gf *GeneralConfig) SetArray(k string, v []string) error {
b, e := json.Marshal(v)
if e != nil {
return e
}
return gf.SetBytes(k, b)
}
// Get gets a key/value pair from gf
func (gf *GeneralConfig) Get(k string) string {
return gf.Values[k]
}
// GetInt gets a key/value pair from gf and return it as an integer
// An error if it can't be converted
func (gf *GeneralConfig) GetInt(k string) (int, error) {
return strconv.Atoi(gf.Get(k))
}
// GetDateTime gets a key/value pair from gf and returns it as a time.Time
// An error if it can't be converted
func (gf *GeneralConfig) GetDateTime(k string) (time.Time, error) {
return time.Parse(time.RFC3339, gf.Get(k))
}
// GetBytes gets a key/value pair from gf and returns it as a byte slice
// Or an error if it fails for whatever reason
func (gf *GeneralConfig) GetBytes(k string) []byte {
return []byte(gf.Get(k))
}
func (gf *GeneralConfig) GetArray(k string) ([]string, error) {
var ret []string
err := json.Unmarshal(gf.GetBytes(k), &ret)
return ret, err
}
// DeleteKey removes a key from the file
func (gf *GeneralConfig) DeleteKey(k string) error {
oldVal := gf.Get(k)
delete(gf.Values, k)
if err := gf.Save(); err != nil {
gf.Values[k] = oldVal
return err
}
return nil
}

View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2015 Martin Chaine
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,33 +0,0 @@
xdg-go [![GoDoc](https://godoc.org/github.com/casimir/xdg-go?status.svg)](https://godoc.org/github.com/casimir/xdg-go) [![codebeat badge](https://codebeat.co/badges/845ce4ee-6285-45dc-a790-e56c00d0f35c)](https://codebeat.co/projects/github-com-casimir-xdg-go)
=======================================================================================================================================================================================================================================
## Quickstart
If you just want OS-sensible paths.
```
configDirs := xdg.ConfigDirs()
dataPath := xdg.DataHome()
cachePath := xdg.CacheHome()
```
Alternatively you can create a context that would determine full paths for your application files.
```
app := xdg.App{Name: "someApp"}
configFile := app.ConfigPath("someApp.toml")
dataFile := app.DataPath("data.json")
```
## Supported path types
This is a KISS implementation of the XDG Base Directory Specification. As of now it handles the following path types:
- Data (`XDG_DATA_*`) for application-wide or user-wide data.
- Config (`XDG_CONFIG_*`) for application-wide or user-wide config.
- Cache (`XDG_CACHE_*`)for application-wide or user-wide cached data.
## Multi-OS
The specification is Linux centric but this implementation targets more: Linux, OSX and Windows. Default values has been chosen regarding both the specification and the OS conventions. Note than you can override these values with the corresponding environment variables.
There are a lot of OSes missing but supporting them implies a good knowledge of these conventions and philosophies, contributors maybe?

View File

@ -1,93 +0,0 @@
package xdg
import (
"os"
"path/filepath"
"strings"
)
// App is an aggregation of XDG information for a named application. Useful to
// propagate app configuration.
type App struct {
Name string
}
func (a App) path(envVar string, defaultFn func() string, file string) string {
base := os.Getenv(envVar)
if base == "" {
base = defaultFn()
}
return filepath.Join(base, a.Name, file)
}
// DataPath determines the full path of a data file.
func (a App) DataPath(file string) string {
return a.path("XDG_DATA_HOME", DataHome, file)
}
// ConfigPath determines the full path of a data file.
func (a App) ConfigPath(file string) string {
return a.path("XDG_CONFIG_HOME", ConfigHome, file)
}
// CachePath determines the full path of a cached file.
func (a App) CachePath(file string) string {
return a.path("XDG_CACHE_HOME", CacheHome, file)
}
func (a App) multiPaths(envVar string, defaultFn func() []string, file string) []string {
var bases []string
env := os.Getenv(envVar)
if env != "" {
bases = strings.Split(env, ":")
} else {
bases = defaultFn()
}
var dirs []string
for _, it := range bases {
dirs = append(dirs, filepath.Join(it, a.Name, file))
}
return dirs
}
// SystemDataPaths determines system-wide possible paths for a data file.
func (a App) SystemDataPaths(file string) []string {
return a.multiPaths("XDG_DATA_DIRS", DataDirs, file)
}
// SystemConfigPaths determines system-wide possible paths for a config file.
func (a App) SystemConfigPaths(file string) []string {
return a.multiPaths("XDG_CONFIG_DIRS", ConfigDirs, file)
}
var defaultApp App
// SetName for the default application. Used for package-wide functions.
func SetName(name string) {
defaultApp.Name = name
}
// DataPath determines the full path of a data file.
func DataPath(file string) string {
return defaultApp.DataPath(file)
}
// ConfigPath determines the full path of a data file.
func ConfigPath(file string) string {
return defaultApp.ConfigPath(file)
}
// CachePath determines the full path of a cached file.
func CachePath(file string) string {
return defaultApp.CachePath(file)
}
// SystemDataPaths determines system-wide possible paths for a data file.
func SystemDataPaths(file string) []string {
return defaultApp.SystemDataPaths(file)
}
// SystemConfigPaths determines system-wide possible paths for a config file.
func SystemConfigPaths(file string) []string {
return defaultApp.SystemConfigPaths(file)
}

View File

@ -1,23 +0,0 @@
package xdg
import "os"
func DataHome() string {
return os.Getenv("HOME") + "/Library"
}
func ConfigHome() string {
return os.Getenv("HOME") + "/Library/Preferences"
}
func CacheHome() string {
return os.Getenv("HOME") + "/Library/Caches"
}
func DataDirs() []string {
return []string{"/Library"}
}
func ConfigDirs() []string {
return []string{"/Library/Preferences", "/Library/Application Support"}
}

View File

@ -1,25 +0,0 @@
package xdg
import "os"
func DataHome() string {
return os.Getenv("HOME") + "/.local/share"
}
func ConfigHome() string {
return os.Getenv("HOME") + "/.config"
}
func CacheHome() string {
return os.Getenv("HOME") + "/.cache"
}
func DataDirs() []string {
// The specification gives a value with trailing slashes but only
// for this value. Seems odd enough to take the liberty of removing them.
return []string{"/usr/local/share", "/usr/share"}
}
func ConfigDirs() []string {
return []string{"/etc/xdg"}
}

View File

@ -1,23 +0,0 @@
package xdg
import "os"
func DataHome() string {
return os.Getenv("APPDATA")
}
func ConfigHome() string {
return os.Getenv("APPDATA")
}
func CacheHome() string {
return os.Getenv("TEMP")
}
func DataDirs() []string {
return []string{os.Getenv("APPDATA"), os.Getenv("LOCALAPPDATA")}
}
func ConfigDirs() []string {
return []string{os.Getenv("APPDATA"), os.Getenv("LOCALAPPDATA")}
}

View File

@ -1,9 +0,0 @@
language: go
go:
- 1.4.3
- 1.5.3
- tip
script:
- go test -v ./...

View File

@ -1,10 +0,0 @@
# How to contribute
We definitely welcome patches and contribution to this project!
### Legal requirements
In order to protect both you and ourselves, you will need to sign the
[Contributor License Agreement](https://cla.developers.google.com/clas).
You may have already signed it for other Google projects.

View File

@ -1 +0,0 @@
Paul Borman <borman@google.com>

View File

@ -1,27 +0,0 @@
Copyright (c) 2009,2014 Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,13 +0,0 @@
This project was automatically exported from code.google.com/p/go-uuid
# uuid ![build status](https://travis-ci.org/pborman/uuid.svg?branch=master)
The uuid package generates and inspects UUIDs based on [RFC 4122](http://tools.ietf.org/html/rfc4122) and DCE 1.1: Authentication and Security Services.
###### Install
`go get github.com/pborman/uuid`
###### Documentation
[![GoDoc](https://godoc.org/github.com/pborman/uuid?status.svg)](http://godoc.org/github.com/pborman/uuid)
Full `go doc` style documentation for the package can be viewed online without installing this package by using the GoDoc site here:
http://godoc.org/github.com/pborman/uuid

View File

@ -1,84 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
"fmt"
"os"
)
// A Domain represents a Version 2 domain
type Domain byte
// Domain constants for DCE Security (Version 2) UUIDs.
const (
Person = Domain(0)
Group = Domain(1)
Org = Domain(2)
)
// NewDCESecurity returns a DCE Security (Version 2) UUID.
//
// The domain should be one of Person, Group or Org.
// On a POSIX system the id should be the users UID for the Person
// domain and the users GID for the Group. The meaning of id for
// the domain Org or on non-POSIX systems is site defined.
//
// For a given domain/id pair the same token may be returned for up to
// 7 minutes and 10 seconds.
func NewDCESecurity(domain Domain, id uint32) UUID {
uuid := NewUUID()
if uuid != nil {
uuid[6] = (uuid[6] & 0x0f) | 0x20 // Version 2
uuid[9] = byte(domain)
binary.BigEndian.PutUint32(uuid[0:], id)
}
return uuid
}
// NewDCEPerson returns a DCE Security (Version 2) UUID in the person
// domain with the id returned by os.Getuid.
//
// NewDCEPerson(Person, uint32(os.Getuid()))
func NewDCEPerson() UUID {
return NewDCESecurity(Person, uint32(os.Getuid()))
}
// NewDCEGroup returns a DCE Security (Version 2) UUID in the group
// domain with the id returned by os.Getgid.
//
// NewDCEGroup(Group, uint32(os.Getgid()))
func NewDCEGroup() UUID {
return NewDCESecurity(Group, uint32(os.Getgid()))
}
// Domain returns the domain for a Version 2 UUID or false.
func (uuid UUID) Domain() (Domain, bool) {
if v, _ := uuid.Version(); v != 2 {
return 0, false
}
return Domain(uuid[9]), true
}
// Id returns the id for a Version 2 UUID or false.
func (uuid UUID) Id() (uint32, bool) {
if v, _ := uuid.Version(); v != 2 {
return 0, false
}
return binary.BigEndian.Uint32(uuid[0:4]), true
}
func (d Domain) String() string {
switch d {
case Person:
return "Person"
case Group:
return "Group"
case Org:
return "Org"
}
return fmt.Sprintf("Domain%d", int(d))
}

View File

@ -1,8 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The uuid package generates and inspects UUIDs.
//
// UUIDs are based on RFC 4122 and DCE 1.1: Authentication and Security Services.
package uuid

View File

@ -1,53 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"crypto/md5"
"crypto/sha1"
"hash"
)
// Well known Name Space IDs and UUIDs
var (
NameSpace_DNS = Parse("6ba7b810-9dad-11d1-80b4-00c04fd430c8")
NameSpace_URL = Parse("6ba7b811-9dad-11d1-80b4-00c04fd430c8")
NameSpace_OID = Parse("6ba7b812-9dad-11d1-80b4-00c04fd430c8")
NameSpace_X500 = Parse("6ba7b814-9dad-11d1-80b4-00c04fd430c8")
NIL = Parse("00000000-0000-0000-0000-000000000000")
)
// NewHash returns a new UUID derived from the hash of space concatenated with
// data generated by h. The hash should be at least 16 byte in length. The
// first 16 bytes of the hash are used to form the UUID. The version of the
// UUID will be the lower 4 bits of version. NewHash is used to implement
// NewMD5 and NewSHA1.
func NewHash(h hash.Hash, space UUID, data []byte, version int) UUID {
h.Reset()
h.Write(space)
h.Write([]byte(data))
s := h.Sum(nil)
uuid := make([]byte, 16)
copy(uuid, s)
uuid[6] = (uuid[6] & 0x0f) | uint8((version&0xf)<<4)
uuid[8] = (uuid[8] & 0x3f) | 0x80 // RFC 4122 variant
return uuid
}
// NewMD5 returns a new MD5 (Version 3) UUID based on the
// supplied name space and data.
//
// NewHash(md5.New(), space, data, 3)
func NewMD5(space UUID, data []byte) UUID {
return NewHash(md5.New(), space, data, 3)
}
// NewSHA1 returns a new SHA1 (Version 5) UUID based on the
// supplied name space and data.
//
// NewHash(sha1.New(), space, data, 5)
func NewSHA1(space UUID, data []byte) UUID {
return NewHash(sha1.New(), space, data, 5)
}

View File

@ -1,83 +0,0 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"errors"
"fmt"
)
// MarshalText implements encoding.TextMarshaler.
func (u UUID) MarshalText() ([]byte, error) {
if len(u) != 16 {
return nil, nil
}
var js [36]byte
encodeHex(js[:], u)
return js[:], nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (u *UUID) UnmarshalText(data []byte) error {
if len(data) == 0 {
return nil
}
id := Parse(string(data))
if id == nil {
return errors.New("invalid UUID")
}
*u = id
return nil
}
// MarshalBinary implements encoding.BinaryMarshaler.
func (u UUID) MarshalBinary() ([]byte, error) {
return u[:], nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
func (u *UUID) UnmarshalBinary(data []byte) error {
if len(data) == 0 {
return nil
}
if len(data) != 16 {
return fmt.Errorf("invalid UUID (got %d bytes)", len(data))
}
var id [16]byte
copy(id[:], data)
*u = id[:]
return nil
}
// MarshalText implements encoding.TextMarshaler.
func (u Array) MarshalText() ([]byte, error) {
var js [36]byte
encodeHex(js[:], u[:])
return js[:], nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (u *Array) UnmarshalText(data []byte) error {
id := Parse(string(data))
if id == nil {
return errors.New("invalid UUID")
}
*u = id.Array()
return nil
}
// MarshalBinary implements encoding.BinaryMarshaler.
func (u Array) MarshalBinary() ([]byte, error) {
return u[:], nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
func (u *Array) UnmarshalBinary(data []byte) error {
if len(data) != 16 {
return fmt.Errorf("invalid UUID (got %d bytes)", len(data))
}
copy(u[:], data)
return nil
}

View File

@ -1,117 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"net"
"sync"
)
var (
nodeMu sync.Mutex
interfaces []net.Interface // cached list of interfaces
ifname string // name of interface being used
nodeID []byte // hardware for version 1 UUIDs
)
// NodeInterface returns the name of the interface from which the NodeID was
// derived. The interface "user" is returned if the NodeID was set by
// SetNodeID.
func NodeInterface() string {
defer nodeMu.Unlock()
nodeMu.Lock()
return ifname
}
// SetNodeInterface selects the hardware address to be used for Version 1 UUIDs.
// If name is "" then the first usable interface found will be used or a random
// Node ID will be generated. If a named interface cannot be found then false
// is returned.
//
// SetNodeInterface never fails when name is "".
func SetNodeInterface(name string) bool {
defer nodeMu.Unlock()
nodeMu.Lock()
return setNodeInterface(name)
}
func setNodeInterface(name string) bool {
if interfaces == nil {
var err error
interfaces, err = net.Interfaces()
if err != nil && name != "" {
return false
}
}
for _, ifs := range interfaces {
if len(ifs.HardwareAddr) >= 6 && (name == "" || name == ifs.Name) {
if setNodeID(ifs.HardwareAddr) {
ifname = ifs.Name
return true
}
}
}
// We found no interfaces with a valid hardware address. If name
// does not specify a specific interface generate a random Node ID
// (section 4.1.6)
if name == "" {
if nodeID == nil {
nodeID = make([]byte, 6)
}
randomBits(nodeID)
return true
}
return false
}
// NodeID returns a slice of a copy of the current Node ID, setting the Node ID
// if not already set.
func NodeID() []byte {
defer nodeMu.Unlock()
nodeMu.Lock()
if nodeID == nil {
setNodeInterface("")
}
nid := make([]byte, 6)
copy(nid, nodeID)
return nid
}
// SetNodeID sets the Node ID to be used for Version 1 UUIDs. The first 6 bytes
// of id are used. If id is less than 6 bytes then false is returned and the
// Node ID is not set.
func SetNodeID(id []byte) bool {
defer nodeMu.Unlock()
nodeMu.Lock()
if setNodeID(id) {
ifname = "user"
return true
}
return false
}
func setNodeID(id []byte) bool {
if len(id) < 6 {
return false
}
if nodeID == nil {
nodeID = make([]byte, 6)
}
copy(nodeID, id)
return true
}
// NodeID returns the 6 byte node id encoded in uuid. It returns nil if uuid is
// not valid. The NodeID is only well defined for version 1 and 2 UUIDs.
func (uuid UUID) NodeID() []byte {
if len(uuid) != 16 {
return nil
}
node := make([]byte, 6)
copy(node, uuid[10:])
return node
}

View File

@ -1,66 +0,0 @@
// Copyright 2015 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"database/sql/driver"
"errors"
"fmt"
)
// Scan implements sql.Scanner so UUIDs can be read from databases transparently
// Currently, database types that map to string and []byte are supported. Please
// consult database-specific driver documentation for matching types.
func (uuid *UUID) Scan(src interface{}) error {
switch src.(type) {
case string:
// if an empty UUID comes from a table, we return a null UUID
if src.(string) == "" {
return nil
}
// see uuid.Parse for required string format
parsed := Parse(src.(string))
if parsed == nil {
return errors.New("Scan: invalid UUID format")
}
*uuid = parsed
case []byte:
b := src.([]byte)
// if an empty UUID comes from a table, we return a null UUID
if len(b) == 0 {
return nil
}
// assumes a simple slice of bytes if 16 bytes
// otherwise attempts to parse
if len(b) == 16 {
*uuid = UUID(b)
} else {
u := Parse(string(b))
if u == nil {
return errors.New("Scan: invalid UUID format")
}
*uuid = u
}
default:
return fmt.Errorf("Scan: unable to scan type %T into UUID", src)
}
return nil
}
// Value implements sql.Valuer so that UUIDs can be written to databases
// transparently. Currently, UUIDs map to strings. Please consult
// database-specific driver documentation for matching types.
func (uuid UUID) Value() (driver.Value, error) {
return uuid.String(), nil
}

View File

@ -1,132 +0,0 @@
// Copyright 2014 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
"sync"
"time"
)
// A Time represents a time as the number of 100's of nanoseconds since 15 Oct
// 1582.
type Time int64
const (
lillian = 2299160 // Julian day of 15 Oct 1582
unix = 2440587 // Julian day of 1 Jan 1970
epoch = unix - lillian // Days between epochs
g1582 = epoch * 86400 // seconds between epochs
g1582ns100 = g1582 * 10000000 // 100s of a nanoseconds between epochs
)
var (
timeMu sync.Mutex
lasttime uint64 // last time we returned
clock_seq uint16 // clock sequence for this run
timeNow = time.Now // for testing
)
// UnixTime converts t the number of seconds and nanoseconds using the Unix
// epoch of 1 Jan 1970.
func (t Time) UnixTime() (sec, nsec int64) {
sec = int64(t - g1582ns100)
nsec = (sec % 10000000) * 100
sec /= 10000000
return sec, nsec
}
// GetTime returns the current Time (100s of nanoseconds since 15 Oct 1582) and
// clock sequence as well as adjusting the clock sequence as needed. An error
// is returned if the current time cannot be determined.
func GetTime() (Time, uint16, error) {
defer timeMu.Unlock()
timeMu.Lock()
return getTime()
}
func getTime() (Time, uint16, error) {
t := timeNow()
// If we don't have a clock sequence already, set one.
if clock_seq == 0 {
setClockSequence(-1)
}
now := uint64(t.UnixNano()/100) + g1582ns100
// If time has gone backwards with this clock sequence then we
// increment the clock sequence
if now <= lasttime {
clock_seq = ((clock_seq + 1) & 0x3fff) | 0x8000
}
lasttime = now
return Time(now), clock_seq, nil
}
// ClockSequence returns the current clock sequence, generating one if not
// already set. The clock sequence is only used for Version 1 UUIDs.
//
// The uuid package does not use global static storage for the clock sequence or
// the last time a UUID was generated. Unless SetClockSequence a new random
// clock sequence is generated the first time a clock sequence is requested by
// ClockSequence, GetTime, or NewUUID. (section 4.2.1.1) sequence is generated
// for
func ClockSequence() int {
defer timeMu.Unlock()
timeMu.Lock()
return clockSequence()
}
func clockSequence() int {
if clock_seq == 0 {
setClockSequence(-1)
}
return int(clock_seq & 0x3fff)
}
// SetClockSeq sets the clock sequence to the lower 14 bits of seq. Setting to
// -1 causes a new sequence to be generated.
func SetClockSequence(seq int) {
defer timeMu.Unlock()
timeMu.Lock()
setClockSequence(seq)
}
func setClockSequence(seq int) {
if seq == -1 {
var b [2]byte
randomBits(b[:]) // clock sequence
seq = int(b[0])<<8 | int(b[1])
}
old_seq := clock_seq
clock_seq = uint16(seq&0x3fff) | 0x8000 // Set our variant
if old_seq != clock_seq {
lasttime = 0
}
}
// Time returns the time in 100s of nanoseconds since 15 Oct 1582 encoded in
// uuid. It returns false if uuid is not valid. The time is only well defined
// for version 1 and 2 UUIDs.
func (uuid UUID) Time() (Time, bool) {
if len(uuid) != 16 {
return 0, false
}
time := int64(binary.BigEndian.Uint32(uuid[0:4]))
time |= int64(binary.BigEndian.Uint16(uuid[4:6])) << 32
time |= int64(binary.BigEndian.Uint16(uuid[6:8])&0xfff) << 48
return Time(time), true
}
// ClockSequence returns the clock sequence encoded in uuid. It returns false
// if uuid is not valid. The clock sequence is only well defined for version 1
// and 2 UUIDs.
func (uuid UUID) ClockSequence() (int, bool) {
if len(uuid) != 16 {
return 0, false
}
return int(binary.BigEndian.Uint16(uuid[8:10])) & 0x3fff, true
}

View File

@ -1,43 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"io"
)
// randomBits completely fills slice b with random data.
func randomBits(b []byte) {
if _, err := io.ReadFull(rander, b); err != nil {
panic(err.Error()) // rand should never fail
}
}
// xvalues returns the value of a byte as a hexadecimal digit or 255.
var xvalues = [256]byte{
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255,
255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
}
// xtob converts the the first two hex bytes of x into a byte.
func xtob(x string) (byte, bool) {
b1 := xvalues[x[0]]
b2 := xvalues[x[1]]
return (b1 << 4) | b2, b1 != 255 && b2 != 255
}

View File

@ -1,201 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"bytes"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"strings"
)
// Array is a pass-by-value UUID that can be used as an effecient key in a map.
type Array [16]byte
// UUID converts uuid into a slice.
func (uuid Array) UUID() UUID {
return uuid[:]
}
// String returns the string representation of uuid,
// xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
func (uuid Array) String() string {
return uuid.UUID().String()
}
// A UUID is a 128 bit (16 byte) Universal Unique IDentifier as defined in RFC
// 4122.
type UUID []byte
// A Version represents a UUIDs version.
type Version byte
// A Variant represents a UUIDs variant.
type Variant byte
// Constants returned by Variant.
const (
Invalid = Variant(iota) // Invalid UUID
RFC4122 // The variant specified in RFC4122
Reserved // Reserved, NCS backward compatibility.
Microsoft // Reserved, Microsoft Corporation backward compatibility.
Future // Reserved for future definition.
)
var rander = rand.Reader // random function
// New returns a new random (version 4) UUID as a string. It is a convenience
// function for NewRandom().String().
func New() string {
return NewRandom().String()
}
// Parse decodes s into a UUID or returns nil. Both the UUID form of
// xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx and
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx are decoded.
func Parse(s string) UUID {
if len(s) == 36+9 {
if strings.ToLower(s[:9]) != "urn:uuid:" {
return nil
}
s = s[9:]
} else if len(s) != 36 {
return nil
}
if s[8] != '-' || s[13] != '-' || s[18] != '-' || s[23] != '-' {
return nil
}
var uuid [16]byte
for i, x := range [16]int{
0, 2, 4, 6,
9, 11,
14, 16,
19, 21,
24, 26, 28, 30, 32, 34} {
if v, ok := xtob(s[x:]); !ok {
return nil
} else {
uuid[i] = v
}
}
return uuid[:]
}
// Equal returns true if uuid1 and uuid2 are equal.
func Equal(uuid1, uuid2 UUID) bool {
return bytes.Equal(uuid1, uuid2)
}
// Array returns an array representation of uuid that can be used as a map key.
// Array panics if uuid is not valid.
func (uuid UUID) Array() Array {
if len(uuid) != 16 {
panic("invalid uuid")
}
var a Array
copy(a[:], uuid)
return a
}
// String returns the string form of uuid, xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
// , or "" if uuid is invalid.
func (uuid UUID) String() string {
if len(uuid) != 16 {
return ""
}
var buf [36]byte
encodeHex(buf[:], uuid)
return string(buf[:])
}
// URN returns the RFC 2141 URN form of uuid,
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, or "" if uuid is invalid.
func (uuid UUID) URN() string {
if len(uuid) != 16 {
return ""
}
var buf [36 + 9]byte
copy(buf[:], "urn:uuid:")
encodeHex(buf[9:], uuid)
return string(buf[:])
}
func encodeHex(dst []byte, uuid UUID) {
hex.Encode(dst[:], uuid[:4])
dst[8] = '-'
hex.Encode(dst[9:13], uuid[4:6])
dst[13] = '-'
hex.Encode(dst[14:18], uuid[6:8])
dst[18] = '-'
hex.Encode(dst[19:23], uuid[8:10])
dst[23] = '-'
hex.Encode(dst[24:], uuid[10:])
}
// Variant returns the variant encoded in uuid. It returns Invalid if
// uuid is invalid.
func (uuid UUID) Variant() Variant {
if len(uuid) != 16 {
return Invalid
}
switch {
case (uuid[8] & 0xc0) == 0x80:
return RFC4122
case (uuid[8] & 0xe0) == 0xc0:
return Microsoft
case (uuid[8] & 0xe0) == 0xe0:
return Future
default:
return Reserved
}
}
// Version returns the version of uuid. It returns false if uuid is not
// valid.
func (uuid UUID) Version() (Version, bool) {
if len(uuid) != 16 {
return 0, false
}
return Version(uuid[6] >> 4), true
}
func (v Version) String() string {
if v > 15 {
return fmt.Sprintf("BAD_VERSION_%d", v)
}
return fmt.Sprintf("VERSION_%d", v)
}
func (v Variant) String() string {
switch v {
case RFC4122:
return "RFC4122"
case Reserved:
return "Reserved"
case Microsoft:
return "Microsoft"
case Future:
return "Future"
case Invalid:
return "Invalid"
}
return fmt.Sprintf("BadVariant%d", int(v))
}
// SetRand sets the random number generator to r, which implements io.Reader.
// If r.Read returns an error when the package requests random data then
// a panic will be issued.
//
// Calling SetRand with nil sets the random number generator to the default
// generator.
func SetRand(r io.Reader) {
if r == nil {
rander = rand.Reader
return
}
rander = r
}

View File

@ -1,41 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
)
// NewUUID returns a Version 1 UUID based on the current NodeID and clock
// sequence, and the current time. If the NodeID has not been set by SetNodeID
// or SetNodeInterface then it will be set automatically. If the NodeID cannot
// be set NewUUID returns nil. If clock sequence has not been set by
// SetClockSequence then it will be set automatically. If GetTime fails to
// return the current NewUUID returns nil.
func NewUUID() UUID {
if nodeID == nil {
SetNodeInterface("")
}
now, seq, err := GetTime()
if err != nil {
return nil
}
uuid := make([]byte, 16)
time_low := uint32(now & 0xffffffff)
time_mid := uint16((now >> 32) & 0xffff)
time_hi := uint16((now >> 48) & 0x0fff)
time_hi |= 0x1000 // Version 1
binary.BigEndian.PutUint32(uuid[0:], time_low)
binary.BigEndian.PutUint16(uuid[4:], time_mid)
binary.BigEndian.PutUint16(uuid[6:], time_hi)
binary.BigEndian.PutUint16(uuid[8:], seq)
copy(uuid[10:], nodeID)
return uuid
}

View File

@ -1,25 +0,0 @@
// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
// Random returns a Random (Version 4) UUID or panics.
//
// The strength of the UUIDs is based on the strength of the crypto/rand
// package.
//
// A note about uniqueness derived from from the UUID Wikipedia entry:
//
// Randomly generated UUIDs have 122 random bits. One's annual risk of being
// hit by a meteorite is estimated to be one chance in 17 billion, that
// means the probability is about 0.00000000006 (6 × 1011),
// equivalent to the odds of creating a few tens of trillions of UUIDs in a
// year and having one duplicate.
func NewRandom() UUID {
uuid := make([]byte, 16)
randomBits([]byte(uuid))
uuid[6] = (uuid[6] & 0x0f) | 0x40 // Version 4
uuid[8] = (uuid[8] & 0x3f) | 0x80 // Variant is 10
return uuid
}

3
vendor/golang.org/x/sys/AUTHORS generated vendored
View File

@ -1,3 +0,0 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at http://tip.golang.org/AUTHORS.

View File

@ -1,3 +0,0 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/sys/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/sys/PATENTS generated vendored
View File

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View File

@ -1 +0,0 @@
_obj/

View File

@ -1,173 +0,0 @@
# Building `sys/unix`
The sys/unix package provides access to the raw system call interface of the
underlying operating system. See: https://godoc.org/golang.org/x/sys/unix
Porting Go to a new architecture/OS combination or adding syscalls, types, or
constants to an existing architecture/OS pair requires some manual effort;
however, there are tools that automate much of the process.
## Build Systems
There are currently two ways we generate the necessary files. We are currently
migrating the build system to use containers so the builds are reproducible.
This is being done on an OS-by-OS basis. Please update this documentation as
components of the build system change.
### Old Build System (currently for `GOOS != "Linux" || GOARCH == "sparc64"`)
The old build system generates the Go files based on the C header files
present on your system. This means that files
for a given GOOS/GOARCH pair must be generated on a system with that OS and
architecture. This also means that the generated code can differ from system
to system, based on differences in the header files.
To avoid this, if you are using the old build system, only generate the Go
files on an installation with unmodified header files. It is also important to
keep track of which version of the OS the files were generated from (ex.
Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes
and have each OS upgrade correspond to a single change.
To build the files for your current OS and architecture, make sure GOOS and
GOARCH are set correctly and run `mkall.sh`. This will generate the files for
your specific system. Running `mkall.sh -n` shows the commands that will be run.
Requirements: bash, perl, go
### New Build System (currently for `GOOS == "Linux" && GOARCH != "sparc64"`)
The new build system uses a Docker container to generate the go files directly
from source checkouts of the kernel and various system libraries. This means
that on any platform that supports Docker, all the files using the new build
system can be generated at once, and generated files will not change based on
what the person running the scripts has installed on their computer.
The OS specific files for the new build system are located in the `${GOOS}`
directory, and the build is coordinated by the `${GOOS}/mkall.go` program. When
the kernel or system library updates, modify the Dockerfile at
`${GOOS}/Dockerfile` to checkout the new release of the source.
To build all the files under the new build system, you must be on an amd64/Linux
system and have your GOOS and GOARCH set accordingly. Running `mkall.sh` will
then generate all of the files for all of the GOOS/GOARCH pairs in the new build
system. Running `mkall.sh -n` shows the commands that will be run.
Requirements: bash, perl, go, docker
## Component files
This section describes the various files used in the code generation process.
It also contains instructions on how to modify these files to add a new
architecture/OS or to add additional syscalls, types, or constants. Note that
if you are using the new build system, the scripts cannot be called normally.
They must be called from within the docker container.
### asm files
The hand-written assembly file at `asm_${GOOS}_${GOARCH}.s` implements system
call dispatch. There are three entry points:
```
func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
```
The first and second are the standard ones; they differ only in how many
arguments can be passed to the kernel. The third is for low-level use by the
ForkExec wrapper. Unlike the first two, it does not call into the scheduler to
let it know that a system call is running.
When porting Go to an new architecture/OS, this file must be implemented for
each GOOS/GOARCH pair.
### mksysnum
Mksysnum is a script located at `${GOOS}/mksysnum.pl` (or `mksysnum_${GOOS}.pl`
for the old system). This script takes in a list of header files containing the
syscall number declarations and parses them to produce the corresponding list of
Go numeric constants. See `zsysnum_${GOOS}_${GOARCH}.go` for the generated
constants.
Adding new syscall numbers is mostly done by running the build on a sufficiently
new installation of the target OS (or updating the source checkouts for the
new build system). However, depending on the OS, you make need to update the
parsing in mksysnum.
### mksyscall.pl
The `syscall.go`, `syscall_${GOOS}.go`, `syscall_${GOOS}_${GOARCH}.go` are
hand-written Go files which implement system calls (for unix, the specific OS,
or the specific OS/Architecture pair respectively) that need special handling
and list `//sys` comments giving prototypes for ones that can be generated.
The mksyscall.pl script takes the `//sys` and `//sysnb` comments and converts
them into syscalls. This requires the name of the prototype in the comment to
match a syscall number in the `zsysnum_${GOOS}_${GOARCH}.go` file. The function
prototype can be exported (capitalized) or not.
Adding a new syscall often just requires adding a new `//sys` function prototype
with the desired arguments and a capitalized name so it is exported. However, if
you want the interface to the syscall to be different, often one will make an
unexported `//sys` prototype, an then write a custom wrapper in
`syscall_${GOOS}.go`.
### types files
For each OS, there is a hand-written Go file at `${GOOS}/types.go` (or
`types_${GOOS}.go` on the old system). This file includes standard C headers and
creates Go type aliases to the corresponding C types. The file is then fed
through godef to get the Go compatible definitions. Finally, the generated code
is fed though mkpost.go to format the code correctly and remove any hidden or
private identifiers. This cleaned-up code is written to
`ztypes_${GOOS}_${GOARCH}.go`.
The hardest part about preparing this file is figuring out which headers to
include and which symbols need to be `#define`d to get the actual data
structures that pass through to the kernel system calls. Some C libraries
preset alternate versions for binary compatibility and translate them on the
way in and out of system calls, but there is almost always a `#define` that can
get the real ones.
See `types_darwin.go` and `linux/types.go` for examples.
To add a new type, add in the necessary include statement at the top of the
file (if it is not already there) and add in a type alias line. Note that if
your type is significantly different on different architectures, you may need
some `#if/#elif` macros in your include statements.
### mkerrors.sh
This script is used to generate the system's various constants. This doesn't
just include the error numbers and error strings, but also the signal numbers
an a wide variety of miscellaneous constants. The constants come from the list
of include files in the `includes_${uname}` variable. A regex then picks out
the desired `#define` statements, and generates the corresponding Go constants.
The error numbers and strings are generated from `#include <errno.h>`, and the
signal numbers and strings are generated from `#include <signal.h>`. All of
these constants are written to `zerrors_${GOOS}_${GOARCH}.go` via a C program,
`_errors.c`, which prints out all the constants.
To add a constant, add the header that includes it to the appropriate variable.
Then, edit the regex (if necessary) to match the desired constant. Avoid making
the regex too broad to avoid matching unintended constants.
## Generated files
### `zerror_${GOOS}_${GOARCH}.go`
A file containing all of the system's generated error numbers, error strings,
signal numbers, and constants. Generated by `mkerrors.sh` (see above).
### `zsyscall_${GOOS}_${GOARCH}.go`
A file containing all the generated syscalls for a specific GOOS and GOARCH.
Generated by `mksyscall.pl` (see above).
### `zsysnum_${GOOS}_${GOARCH}.go`
A list of numeric constants for all the syscall number of the specific GOOS
and GOARCH. Generated by mksysnum (see above).
### `ztypes_${GOOS}_${GOARCH}.go`
A file containing Go types for passing into (or returning from) syscalls.
Generated by godefs and the types file (see above).

View File

@ -1,29 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo
#include "textflag.h"
//
// System call support for 386, Darwin
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-52
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
JMP syscall·RawSyscall6(SB)

View File

@ -1,29 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo
#include "textflag.h"
//
// System call support for AMD64, Darwin
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)

View File

@ -1,30 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo
// +build arm,darwin
#include "textflag.h"
//
// System call support for ARM, Darwin
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
B syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
B syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-52
B syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
B syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
B syscall·RawSyscall6(SB)

View File

@ -1,30 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo
// +build arm64,darwin
#include "textflag.h"
//
// System call support for AMD64, Darwin
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
B syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
B syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
B syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
B syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
B syscall·RawSyscall6(SB)

View File

@ -1,29 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo
#include "textflag.h"
//
// System call support for AMD64, DragonFly
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-64
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-88
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-112
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-64
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-88
JMP syscall·RawSyscall6(SB)

Some files were not shown because too many files have changed in this diff Show More