Initial Commit
This commit is contained in:
41
go/sieve/README.md
Normal file
41
go/sieve/README.md
Normal file
@@ -0,0 +1,41 @@
|
||||
# Sieve
|
||||
|
||||
Write a program that uses the Sieve of Eratosthenes to find all the primes from 2 up to a given number.
|
||||
|
||||
The Sieve of Eratosthenes is a simple, ancient algorithm for finding all
|
||||
prime numbers up to any given limit. It does so by iteratively marking as
|
||||
composite (i.e. not prime) the multiples of each prime,
|
||||
starting with the multiples of 2.
|
||||
|
||||
Create your range, starting at two and continuing up to and including the given limit. (i.e. [2, limit])
|
||||
|
||||
The algorithm consists of repeating the following over and over:
|
||||
|
||||
- take the next available unmarked number in your list (it is prime)
|
||||
- mark all the multiples of that number (they are not prime)
|
||||
|
||||
Repeat until you have processed each number in your range.
|
||||
|
||||
When the algorithm terminates, all the numbers in the list that have not
|
||||
been marked are prime.
|
||||
|
||||
The wikipedia article has a useful graphic that explains the algorithm:
|
||||
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
|
||||
Notice that this is a very specific algorithm, and the tests don't check
|
||||
that you've implemented the algorithm, only that you've come up with the
|
||||
correct list of primes.
|
||||
|
||||
To run the tests simply run the command `go test` in the exercise directory.
|
||||
|
||||
If the test suite contains benchmarks, you can run these with the `-bench`
|
||||
flag:
|
||||
|
||||
go test -bench .
|
||||
|
||||
For more detailed info about the Go track see the [help
|
||||
page](http://help.exercism.io/getting-started-with-go.html).
|
||||
|
||||
## Source
|
||||
|
||||
Sieve of Eratosthenes at Wikipedia [view source](http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
25
go/sieve/sieve.go
Normal file
25
go/sieve/sieve.go
Normal file
@@ -0,0 +1,25 @@
|
||||
package sieve
|
||||
|
||||
import "fmt"
|
||||
|
||||
// Sieve applies the Sieve of Eratosthenes up to depth
|
||||
// Returning a slice of all of the results
|
||||
func Sieve(depth int) []int {
|
||||
var primes []int
|
||||
test := 2
|
||||
for test <= depth {
|
||||
testIsPrime := true
|
||||
for idx := range primes {
|
||||
if test%primes[idx] == 0 {
|
||||
testIsPrime = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if testIsPrime {
|
||||
primes = append(primes, test)
|
||||
}
|
||||
test++
|
||||
fmt.Println("")
|
||||
}
|
||||
return primes
|
||||
}
|
36
go/sieve/sieve_test.go
Normal file
36
go/sieve/sieve_test.go
Normal file
@@ -0,0 +1,36 @@
|
||||
package sieve
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
var p10 = []int{2, 3, 5, 7}
|
||||
var p1000 = []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
|
||||
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
|
||||
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
|
||||
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
|
||||
311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
|
||||
401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,
|
||||
491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593,
|
||||
599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
|
||||
683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787,
|
||||
797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883,
|
||||
887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997}
|
||||
|
||||
func TestSieve(t *testing.T) {
|
||||
p := Sieve(10)
|
||||
if !reflect.DeepEqual(p, p10) {
|
||||
t.Fatalf("Sieve(10) = %v, want %v", p, p10)
|
||||
}
|
||||
p = Sieve(1000)
|
||||
if !reflect.DeepEqual(p, p1000) {
|
||||
t.Fatalf("Sieve(1000) = %v, want %v", p, p1000)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSieve(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
Sieve(1000)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user