Initial Commit

This commit is contained in:
2016-08-13 18:20:14 -05:00
commit 50f4a86fd8
408 changed files with 15301 additions and 0 deletions

View File

@@ -0,0 +1,20 @@
# Palindrome Products
Write a program that can detect palindrome products in a given range.
A palindromic number reads the same both ways. The largest palindrome
made from the product of two 2-digit numbers is 9009 = 91 x 99.
To run the tests simply run the command `go test` in the exercise directory.
If the test suite contains benchmarks, you can run these with the `-bench`
flag:
go test -bench .
For more detailed info about the Go track see the [help
page](http://help.exercism.io/getting-started-with-go.html).
## Source
Problem 4 at Project Euler [view source](http://projecteuler.net/problem=4)

View File

@@ -0,0 +1,91 @@
package palindrome
import (
"fmt"
"strconv"
)
// Product is a palindromic product and all of its
// factorizations
type Product struct {
Product int
Factorizations [][2]int
}
func createProduct(fac1, fac2 int) *Product {
p := Product{Product: (fac1 * fac2)}
p.addFactors(fac1, fac2)
return &p
}
func (p *Product) hasFactors(fac1, fac2 int) bool {
for i := 0; i < len(p.Factorizations); i++ {
if p.Factorizations[i][0] == fac1 && p.Factorizations[i][1] == fac2 {
return true
}
if p.Factorizations[i][1] == fac1 && p.Factorizations[i][0] == fac2 {
return true
}
}
return false
}
func (p *Product) addFactors(fac1, fac2 int) {
if (fac1 * fac2) == p.Product {
if !p.hasFactors(fac1, fac2) {
p.Factorizations = append(p.Factorizations, [2]int{fac1, fac2})
}
}
}
// Products takes a min and a max and finds
func Products(fmin, fmax int) (Product, Product, error) {
if fmin > fmax {
return Product{}, Product{}, fmt.Errorf("fmin > fmax")
}
var pMin, pMax Product
var err error
var allProducts []Product
for i := fmin; i <= fmax; i++ {
for j := fmin; j <= fmax; j++ {
if isPalindrome(strconv.Itoa(i * j)) {
var found bool
for k := 0; k < len(allProducts); k++ {
if allProducts[k].Product == (i * j) {
allProducts[k].addFactors(i, j)
found = true
break
}
}
if !found {
allProducts = append(allProducts, *createProduct(i, j))
}
}
}
}
for i := range allProducts {
if allProducts[i].Product > pMax.Product {
// is the old pMax the new pMin?
if len(pMin.Factorizations) == 0 {
pMin = pMax
}
pMax = allProducts[i]
} else {
if allProducts[i].Product < pMin.Product {
pMin = allProducts[i]
}
}
}
fmt.Println(allProducts)
return pMin, pMax, err
}
func isPalindrome(s string) bool {
for i := 0; i < (len(s) / 2); i++ {
if s[i] != s[len(s)-1-i] {
return false
}
}
return true
}

View File

@@ -0,0 +1,92 @@
package palindrome
import (
"fmt"
"strconv"
)
// Product is a palindromic product and all of its
// factorizations
type Product struct {
Product int
Factorizations [][2]int
}
func createProduct(fac1, fac2 int) *Product {
p := Product{Product: (fac1 * fac2)}
p.addFactors(fac1, fac2)
return &p
}
func (p *Product) hasFactors(fac1, fac2 int) bool {
for i := 0; i < len(p.Factorizations); i++ {
if p.Factorizations[i][0] == fac1 && p.Factorizations[i][1] == fac2 {
return true
}
if p.Factorizations[i][1] == fac1 && p.Factorizations[i][0] == fac2 {
return true
}
}
return false
}
func (p *Product) addFactors(fac1, fac2 int) {
if (fac1 * fac2) == p.Product {
if !p.hasFactors(fac1, fac2) {
p.Factorizations = append(p.Factorizations, [2]int{fac1, fac2})
}
}
}
// Products takes a min and a max and finds
func Products(fmin, fmax int) (Product, Product, error) {
if fmin > fmax {
return Product{}, Product{}, fmt.Errorf("fmin > fmax")
}
var pMin, pMax Product
var allProducts []Product
for i := fmin; i <= fmax; i++ {
for j := fmin; j <= fmax; j++ {
if isPalindrome(strconv.Itoa(i * j)) {
var found bool
for k := 0; k < len(allProducts); k++ {
if allProducts[k].Product == (i * j) {
allProducts[k].addFactors(i, j)
found = true
break
}
}
if !found {
allProducts = append(allProducts, *createProduct(i, j))
}
}
}
}
for i := range allProducts {
if allProducts[i].Product > pMax.Product {
// is the old pMax the new pMin?
if len(pMin.Factorizations) == 0 {
pMin = pMax
}
pMax = allProducts[i]
} else {
if allProducts[i].Product < pMin.Product {
pMin = allProducts[i]
}
}
}
if len(allProducts) == 0 {
return pMin, pMax, fmt.Errorf("No palindromes")
}
return pMin, pMax, nil
}
func isPalindrome(s string) bool {
for i := 0; i < (len(s) / 2); i++ {
if s[i] != s[len(s)-1-i] {
return false
}
}
return true
}

View File

@@ -0,0 +1,98 @@
package palindrome
import (
"fmt"
"reflect"
"strings"
"testing"
)
// API to impliment:
// type Product struct {
// Product int // palindromic, of course
// // list of all possible two-factor factorizations of Product, within
// // given limits, in order
// Factorizations [][2]int
// }
// func Products(fmin, fmax int) (pmin, pmax Product, error)
var testData = []struct {
// input to Products(): range limits for factors of the palindrome
fmin, fmax int
// output from Products():
pmin, pmax Product // min and max palandromic products
errPrefix string // start of text if there is an error, "" otherwise
}{
{1, 9,
Product{}, // zero value means don't bother to test it
Product{9, [][2]int{{1, 9}, {3, 3}}},
""},
{10, 99,
Product{121, [][2]int{{11, 11}}},
Product{9009, [][2]int{{91, 99}}},
""},
{100, 999,
Product{10201, [][2]int{{101, 101}}},
Product{906609, [][2]int{{913, 993}}},
""},
{4, 10, Product{}, Product{}, "No palindromes"},
{10, 4, Product{}, Product{}, "fmin > fmax"},
/* bonus curiosities. (can a negative number be a palindrome?
// most say no
{-99, -10, Product{}, Product{}, "Negative limits"},
// but you can still get non-negative products from negative factors.
{-99, -10,
Product{121, [][2]int{{-11, -11}}},
Product{9009, [][2]int{{-99, -91}}},
""},
{-2, 2,
Product{0, [][2]int{{-2, 0}, {-1, 0}, {0, 0}, {0, 1}, {0, 2}}},
Product{4, [][2]int{{-2, -2}, {2, 2}}},
""},
// or you could reverse the *digits*, keeping the minus sign in place.
{-2, 2,
Product{-4, [][2]int{{-2, 2}}},
Product{4, [][2]int{{-2, -2}, {2, 2}}},
""},
{
{0, (^uint(0))>>1, Product{}, Product{}, "This one's gonna overflow"},
*/
}
func TestPalindromeProducts(t *testing.T) {
for _, test := range testData {
// common preamble for test failures
ret := fmt.Sprintf("Products(%d, %d) returned",
test.fmin, test.fmax)
// test
pmin, pmax, err := Products(test.fmin, test.fmax)
switch {
case err == nil:
if test.errPrefix > "" {
t.Fatalf(ret+" err = nil, want %q", test.errPrefix+"...")
}
case test.errPrefix == "":
t.Fatalf(ret+" err = %q, want nil", err)
case !strings.HasPrefix(err.Error(), test.errPrefix):
t.Fatalf(ret+" err = %q, want %q", err, test.errPrefix+"...")
default:
continue // correct error, no further tests for this test case
}
matchProd := func(ww string, rp, wp Product) {
if len(wp.Factorizations) > 0 && // option to skip test
!reflect.DeepEqual(rp, wp) {
t.Fatal(ret, ww, "=", rp, "want", wp)
}
}
matchProd("pmin", pmin, test.pmin)
matchProd("pmax", pmax, test.pmax)
}
}
func BenchmarkPalindromeProducts(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, test := range testData {
Products(test.fmin, test.fmax)
}
}
}