Syncing Up

This commit is contained in:
2016-09-09 11:24:29 -05:00
parent 148fad68a9
commit 2f99878b09
14 changed files with 1352 additions and 24 deletions

View File

@@ -0,0 +1,53 @@
# Binary Search
Write a program that implements a binary search algorithm.
Searching a sorted collection is a common task. A dictionary is a sorted
list of word definitions. Given a word, one can find its definition. A
telephone book is a sorted list of people's names, addresses, and
telephone numbers. Knowing someone's name allows one to quickly find
their telephone number and address.
If the list to be searched contains more than a few items (a dozen, say)
a binary search will require far fewer comparisons than a linear search,
but it imposes the requirement that the list be sorted.
In computer science, a binary search or half-interval search algorithm
finds the position of a specified input value (the search "key") within
an array sorted by key value.
In each step, the algorithm compares the search key value with the key
value of the middle element of the array.
If the keys match, then a matching element has been found and its index,
or position, is returned.
Otherwise, if the search key is less than the middle element's key, then
the algorithm repeats its action on the sub-array to the left of the
middle element or, if the search key is greater, on the sub-array to the
right.
If the remaining array to be searched is empty, then the key cannot be
found in the array and a special "not found" indication is returned.
A binary search halves the number of items to check with each iteration,
so locating an item (or determining its absence) takes logarithmic time.
A binary search is a dichotomic divide and conquer search algorithm.
To run the tests simply run the command `go test` in the exercise directory.
If the test suite contains benchmarks, you can run these with the `-bench`
flag:
go test -bench .
For more detailed info about the Go track see the [help
page](http://exercism.io/languages/go).
## Source
Wikipedia [http://en.wikipedia.org/wiki/Binary_search_algorithm](http://en.wikipedia.org/wiki/Binary_search_algorithm)
## Submitting Incomplete Problems
It's possible to submit an incomplete solution so you can see how others have completed the exercise.

View File

@@ -0,0 +1,58 @@
package binarysearch
import "strconv"
// SearchInts searches a slice of ints for the first position that 'n' should
// be inserted at and keep 'hay' sorted
func SearchInts(hay []int, n int) int {
if len(hay) == 0 || n < hay[0] {
return 0
}
if n > hay[len(hay)-1] {
return len(hay)
}
mid := len(hay) / 2
if hay[mid] < n {
return mid + 1 + SearchInts(hay[mid+1:], n)
}
if n < hay[mid] {
return SearchInts(hay[:mid], n)
}
for mid > 0 && hay[mid-1] == n {
mid--
}
return mid
}
// Message does the binary search and returns an english string representation
// of the result
func Message(hay []int, n int) string {
if len(hay) == 0 {
return "slice has no values"
}
v := SearchInts(hay, n)
if v < len(hay) && hay[v] == n {
switch v {
case 0:
return itoa(n) + " found at beginning of slice"
case len(hay) - 1:
return itoa(n) + " found at end of slice"
}
return itoa(n) + " found at index " + itoa(v)
}
switch v {
case 0:
return itoa(n) + " < all values"
case len(hay):
return itoa(n) + " > all " + itoa(len(hay)) + " values"
}
return itoa(n) + " > " + itoa(hay[v-1]) + " at index " + itoa(v-1) + ", < " + itoa(hay[v]) + " at index " + itoa(v)
}
// itoa is because I'm tired of writing strconv.Itoa
func itoa(v int) string {
return strconv.Itoa(v)
}

View File

@@ -0,0 +1,193 @@
// Go has binary search in the standard library. Let's reimplement
// sort.SearchInts with the same API as documented in the standard library
// at http://golang.org/pkg/sort/#Search. Note that there are some differences
// with the exercise README.
//
// * If there are duplicate values of the key you are searching for, you can't
// just stop at the first one you find; you must find the first occurance in
// the slice.
//
// * There is no special "not found" indication. If the search key is not
// present, SearchInts returns the index of the first value greater than the
// search key. If the key is greater than all values in the slice, SearchInts
// returns the length of the slice.
//
// * You can assume the slice is sorted in increasing order. There is no need
// to check that it is sorted. (That would wreck the performance.)
//
// Try it on your own without peeking at the standard library code.
package binarysearch
import (
"math/rand"
"sort"
"testing"
)
var testData = []struct {
ref string
slice []int
key int
x int // expected result
}{
{"6 found at index 3",
[]int{1, 3, 4, 6, 8, 9, 11},
6, 3},
{"9 found at index 5",
[]int{1, 3, 4, 6, 8, 9, 11},
9, 5},
{"3 found at index 1",
[]int{1, 3, 5, 8, 13, 21, 34, 55, 89, 144},
3, 1},
{"55 found at index 7",
[]int{1, 3, 5, 8, 13, 21, 34, 55, 89, 144},
55, 7},
{"21 found at index 5",
[]int{1, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377},
21, 5},
{"34 found at index 6",
[]int{1, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377},
34, 6},
{"1 found at beginning of slice",
[]int{1, 3, 6},
1, 0},
{"6 found at end of slice",
[]int{1, 3, 6},
6, 2},
{"2 > 1 at index 0, < 3 at index 1",
[]int{1, 3, 6},
2, 1},
{"2 < all values",
[]int{11, 13, 16},
2, 0},
{"21 > all 3 values",
[]int{11, 13, 16},
21, 3},
{"1 found at beginning of slice",
[]int{1, 1, 1, 1, 1, 3, 6}, // duplicates
1, 0},
{"3 found at index 1",
[]int{1, 3, 3, 3, 3, 3, 6},
3, 1},
{"6 found at index 4",
[]int{1, 3, 3, 3, 6, 6, 6},
6, 4},
{"-2 > -3 at index 1, < -1 at index 2",
[]int{-6, -3, -1}, // negatives
-2, 2},
{"0 > -7 at index 4, < 1 at index 5",
[]int{-19, -17, -15, -12, -7, 1, 14, 35, 69, 124},
0, 5},
{"slice has no values",
nil, 0, 0},
}
func TestSearchInts(t *testing.T) {
for _, test := range testData {
if !sort.IntsAreSorted(test.slice) {
t.Skip("Invalid test data")
}
if x := SearchInts(test.slice, test.key); x != test.x {
t.Fatalf("SearchInts(%v, %d) = %d, want %d",
test.slice, test.key, x, test.x)
}
}
}
// Did you get it? Did you cut and paste from the standard library?
// Whatever. Now show you can work it.
//
// The test program will supply slices and keys and you will write a function
// that searches and returns one of the following messages:
//
// k found at beginning of slice.
// k found at end of slice.
// k found at index fx.
// k < all values.
// k > all n values.
// k > lv at lx, < gv at gx.
// slice has no values.
//
// In your messages, substitute appropritate values for k, lv, and gv;
// substitute indexes for fx, lx, and gx; substitute a number for n.
//
// In the function Message you will demonstrate a number of different ways
// to test the result of SearchInts. Note that you would probably never need
// all of these different tests in a real program. The point of the exercise
// is just to show that it is possible to identify a number of different
// conditions from the return value.
func TestMessage(t *testing.T) {
for _, test := range testData {
if !sort.IntsAreSorted(test.slice) {
t.Skip("Invalid test data")
}
if res := Message(test.slice, test.key); res != test.ref {
t.Fatalf("Message(%v, %d) =\n%q\nwant:\n%q",
test.slice, test.key, res, test.ref)
}
}
}
// Benchmarks also test searching larger random slices
func Benchmark1e2(b *testing.B) {
s := make([]int, 1e2)
for i := range s {
s[i] = rand.Intn(len(s))
}
sort.Ints(s)
k := rand.Intn(len(s))
ref := sort.SearchInts(s, k)
res := SearchInts(s, k)
if ref != res {
b.Fatalf(
"Search of %d values gave different answer than sort.SearchInts",
len(s))
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
SearchInts(s, k)
}
}
func Benchmark1e4(b *testing.B) {
s := make([]int, 1e4)
for i := range s {
s[i] = rand.Intn(len(s))
}
sort.Ints(s)
k := rand.Intn(len(s))
ref := sort.SearchInts(s, k)
res := SearchInts(s, k)
if ref != res {
b.Fatalf(
"Search of %d values gave different answer than sort.SearchInts",
len(s))
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
SearchInts(s, k)
}
}
func Benchmark1e6(b *testing.B) {
s := make([]int, 1e6)
for i := range s {
s[i] = rand.Intn(len(s))
}
sort.Ints(s)
k := rand.Intn(len(s))
ref := sort.SearchInts(s, k)
res := SearchInts(s, k)
if ref != res {
b.Fatalf(
"Search of %d values gave different answer than sort.SearchInts",
len(s))
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
SearchInts(s, k)
}
}