This commit is contained in:
2016-09-12 17:41:46 -05:00
parent 2f99878b09
commit 1415b3ea84
10 changed files with 1190 additions and 1 deletions

100
go/simple-cipher/README.md Normal file
View File

@@ -0,0 +1,100 @@
# Simple Cipher
Implement a simple shift cipher like Caesar and a more secure substitution cipher
## Step 1
"If he had anything confidential to say, he wrote it in cipher, that is,
by so changing the order of the letters of the alphabet, that not a word
could be made out. If anyone wishes to decipher these, and get at their
meaning, he must substitute the fourth letter of the alphabet, namely D,
for A, and so with the others."
—Suetonius, Life of Julius Caesar
Ciphers are very straight-forward algorithms that allow us to render
text less readable while still allowing easy deciphering. They are
vulnerable to many forms of cryptoanalysis, but we are lucky that
generally our little sisters are not cryptoanalysts.
The Caesar Cipher was used for some messages from Julius Caesar that
were sent afield. Now Caesar knew that the cipher wasn't very good, but
he had one ally in that respect: almost nobody could read well. So even
being a couple letters off was sufficient so that people couldn't
recognize the few words that they did know.
Your task is to create a simple shift cipher like the Caesar Cipher.
This image is a great example of the Caesar Cipher: ![Caesar Cipher][1]
For example:
Giving "iamapandabear" as input to the encode function returns the cipher "ldpdsdqgdehdu". Obscure enough to keep our message secret in transit.
When "ldpdsdqgdehdu" is put into the decode function it would return
the original "iamapandabear" letting your friend read your original
message.
## Step 2
Shift ciphers are no fun though when your kid sister figures it out. Try
amending the code to allow us to specify a key and use that for the
shift distance. This is called a substitution cipher.
Here's an example:
Given the key "aaaaaaaaaaaaaaaaaa", encoding the string "iamapandabear"
would return the original "iamapandabear".
Given the key "ddddddddddddddddd", encoding our string "iamapandabear"
would return the obscured "lpdsdqgdehdu"
In the example above, we've set a = 0 for the key value. So when the
plaintext is added to the key, we end up with the same message coming
out. So "aaaa" is not an ideal key. But if we set the key to "dddd", we
would get the same thing as the Caesar Cipher.
## Step 3
The weakest link in any cipher is the human being. Let's make your
substitution cipher a little more fault tolerant by providing a source
of randomness and ensuring that they key is not composed of numbers or
capital letters.
If someone doesn't submit a key at all, generate a truly random key of
at least 100 characters in length, accessible via Cipher#key (the #
syntax means instance variable)
If the key submitted has capital letters or numbers, throw an
ArgumentError with a message to that effect.
## Extensions
Shift ciphers work by making the text slightly odd, but are vulnerable
to frequency analysis. Substitution ciphers help that, but are still
very vulnerable when the key is short or if spaces are preserved. Later
on you'll see one solution to this problem in the exercise
"crypto-square".
If you want to go farther in this field, the questions begin to be about
how we can exchange keys in a secure way. Take a look at [Diffie-Hellman
on Wikipedia][dh] for one of the first implementations of this scheme.
[1]: http://upload.wikimedia.org/wikipedia/en/7/75/Caesar3.png
[dh]: http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
To run the tests simply run the command `go test` in the exercise directory.
If the test suite contains benchmarks, you can run these with the `-bench`
flag:
go test -bench .
For more detailed info about the Go track see the [help
page](http://exercism.io/languages/go).
## Source
Substitution Cipher at Wikipedia [http://en.wikipedia.org/wiki/Substitution_cipher](http://en.wikipedia.org/wiki/Substitution_cipher)
## Submitting Incomplete Problems
It's possible to submit an incomplete solution so you can see how others have completed the exercise.

143
go/simple-cipher/cipher.go Normal file
View File

@@ -0,0 +1,143 @@
package cipher
import (
"regexp"
"strings"
)
// Cipher is an interface for all ciphers
type Cipher interface {
Encode(string) string
Decode(string) string
}
// ShiftCipher is a cipher that shifts all letters a fixed distance
type ShiftCipher struct {
width int
}
// NewShift returns a new ShiftCipher
func NewShift(w int) *ShiftCipher {
if w == 0 || w < -25 || w > 25 {
return nil
}
c := new(ShiftCipher)
c.width = w
return c
}
// Encode encodes a string using the current ShiftCipher
func (c *ShiftCipher) Encode(s string) string {
var ret string
s = strings.ToLower(s)
re := regexp.MustCompile("[^a-z]")
s = re.ReplaceAllString(s, "")
for i := range s {
newChar := s[i] + byte(c.width)
if newChar < 'a' {
newChar = 'z' - ('a' - newChar) + 1
}
if newChar > 'z' {
newChar = 'a' + (newChar - 'z') - 1
}
ret = ret + string(newChar)
}
return ret
}
// Decode decodes a string using the current ShiftCipher
func (c *ShiftCipher) Decode(s string) string {
var ret string
s = strings.ToLower(s)
re := regexp.MustCompile("[^a-z]")
s = re.ReplaceAllString(s, "")
for i := range s {
newChar := s[i] - byte(c.width)
if newChar < 'a' {
newChar = 'z' - ('a' - newChar) + 1
}
if newChar > 'z' {
newChar = 'a' + (newChar - 'z') - 1
}
ret = ret + string(newChar)
}
return ret
}
// A CeasarCipher is a ShiftCipher, just hardcoded at 3
type CeasarCipher struct {
c *ShiftCipher
}
// NewCaesar creates a new CaesarCipher
func NewCaesar() *CeasarCipher {
c := new(CeasarCipher)
c.c = NewShift(3)
return c
}
// Encode just calls the shift cipher in the caesar cipher
func (c *CeasarCipher) Encode(s string) string {
return c.c.Encode(s)
}
// Decode just calls the shift cipher in the caesar cipher
func (c *CeasarCipher) Decode(s string) string {
return c.c.Decode(s)
}
// VigenereCipher a cipher where each character can have a different shift width
type VigenereCipher struct {
key string
}
// Encode encodes the given string
func (c *VigenereCipher) Encode(s string) string {
var ret string
s = strings.ToLower(s)
re := regexp.MustCompile("[^a-z]")
s = re.ReplaceAllString(s, "")
for i := range s {
keyChar := c.key[i%len(c.key)] - 'a'
newChar := s[i] + keyChar
if newChar < 'a' {
newChar = 'z' - ('a' - newChar) + 1
}
if newChar > 'z' {
newChar = 'a' + (newChar - 'z') - 1
}
ret = ret + string(newChar)
}
return ret
}
// Decode decodes the given string
func (c *VigenereCipher) Decode(s string) string {
var ret string
s = strings.ToLower(s)
re := regexp.MustCompile("[^a-z]")
s = re.ReplaceAllString(s, "")
for i := range s {
keyChar := c.key[i%len(c.key)] - 'a'
newChar := s[i] - keyChar
if newChar < 'a' {
newChar = 'z' - ('a' - newChar) + 1
}
if newChar > 'z' {
newChar = 'a' + (newChar - 'z') - 1
}
ret = ret + string(newChar)
}
return ret
}
// NewVigenere returns a new Vigenere Cipher
func NewVigenere(key string) *VigenereCipher {
re := regexp.MustCompile("[^a-z]")
if len(key) < 3 || re.MatchString(key) {
return nil
}
c := new(VigenereCipher)
c.key = key
return c
}

View File

@@ -0,0 +1,270 @@
// For Step 1, implement the Caesar cipher, which seems clear enough except
// maybe for figuring out whether to add or subtract.
//
// For Step 2, implement a shift cipher, like Caesar except the shift amount
// is specified as an int. (Each letter of "ddddddddddddddddd", is 'd';
// 'd'-'a' == 3, so the corresponding shift amount is 3.)
//
// Steps 2 and 3 seem to be describing the Vigenère cipher (Google it)
// so let's do that too. The random thing, don't worry about. There is
// no test for that.
//
// API:
//
// type Cipher interface {
// Encode(string) string
// Decode(string) string
// }
// NewCaesar() Cipher
// NewShift(int) Cipher
// NewVigenere(string) Cipher
//
// Interface Cipher is in file cipher.go.
//
// Argument for NewShift must be in the range 1 to 25 or -1 to -25.
// Zero is disallowed. For invalid arguments NewShift returns nil.
//
// Argument for NewVigenere must consist of lower case letters a-z only.
// Values consisting entirely of the letter 'a' are disallowed.
// For invalid arguments NewVigenere returns nil.
package cipher
import (
"fmt"
"testing"
)
// type for testing cipher encoding alone, without requiring any text prep.
type prepped struct {
pt string // prepped text == decoded plain text
ct string // cipher text
}
// +3? -3? Positions vary. Your code just has to pass the tests.
var caesarPrepped = []prepped{
{"iamapandabear", "ldpdsdqgdehdu"},
{"programmingisawesome", "surjudpplqjlvdzhvrph"},
{"todayisholiday", "wrgdblvkrolgdb"},
{"venividivici", "yhqlylglylfl"},
}
func TestCaesarPrepped(t *testing.T) {
c := NewCaesar()
for _, test := range caesarPrepped {
if enc := c.Encode(test.pt); enc != test.ct {
t.Fatalf("Caesar Encode(%q) = %q, want %q.", test.pt, enc, test.ct)
}
}
}
// type for testing implementations of the Cipher interface
type cipherTest struct {
source string // source text, any UTF-8
cipher string // cipher text, result of Encode(st)
plain string // decoded plain text, result of Decode(ct)
}
var caesarTests = []cipherTest{
{"Go, go, gophers", "jrjrjrskhuv", "gogogophers"},
{"I am a panda bear.", "ldpdsdqgdehdu", "iamapandabear"},
{"Programming is AWESOME!", "surjudpplqjlvdzhvrph", "programmingisawesome"},
{"today is holiday", "wrgdblvkrolgdb", "todayisholiday"},
{"Twas the night before Christmas",
"wzdvwkhqljkwehiruhfkulvwpdv",
"twasthenightbeforechristmas"},
{"venividivici", "yhqlylglylfl", "venividivici"},
{" -- @#!", "", ""},
{"", "", ""},
}
func TestCaesar(t *testing.T) {
testCipher("Caesar", NewCaesar(), caesarTests, t)
}
func testCipher(name string, c Cipher, tests []cipherTest, t *testing.T) {
for _, test := range tests {
if enc := c.Encode(test.source); enc != test.cipher {
t.Fatalf("%s Encode(%q) = %q, want %q.",
name, test.plain, enc, test.cipher)
}
if dec := c.Decode(test.cipher); dec != test.plain {
t.Fatalf("%s Decode(%q) = %q, want %q.",
name, test.cipher, dec, test.plain)
}
}
}
var NSATests = []cipherTest{
{"THE ENEMY IS NEAR", "qebbkbjvfpkbxo", "theenemyisnear"},
{"SPIES SEND SECRET MESSAGES",
"pmfbppbkapbzobqjbppxdbp",
"spiessendsecretmessages"},
{"THOMAS JEFFERSON DESIGNED A SUBSTITUTION CIPHER",
"qeljxpgbccboplkabpfdkbaxprypqfqrqflkzfmebo",
"thomasjeffersondesignedasubstitutioncipher"},
{"the quick brown fox jumps over the lazy dog",
"qebnrfzhyoltkclugrjmplsboqebixwvald",
"thequickbrownfoxjumpsoverthelazydog"},
}
func TestShift(t *testing.T) {
// test shift(3) against Caesar cases.
c := NewShift(3)
if c == nil {
t.Fatal("NewShift(3) returned nil, want non-nil Cipher")
}
testCipher("Shift(3)", c, caesarTests, t)
// NSA and WP say Caesar uses shift of -3
c = NewShift(-3)
if c == nil {
t.Fatal("NewShift(-3) returned nil, want non-nil Cipher")
}
testCipher("Shift(-3)", c, NSATests, t)
// invalid shifts
for _, s := range []int{-27, -26, 0, 26, 27} {
if NewShift(s) != nil {
t.Fatal("NewShift(%d) returned non-nil, "+
"Want nil return for invalid argument.", s)
}
}
}
var vtests = []struct {
key string
tests []cipherTest
}{
{"lemon", []cipherTest{{"ATTACKATDAWN", "lxfopvefrnhr", "attackatdawn"}}},
{"abcdefghij", []cipherTest{
{"aaaaaaaaaa", "abcdefghij", "aaaaaaaaaa"},
{"zzzzzzzzzz", "zabcdefghi", "zzzzzzzzzz"},
}},
{"iamapandabear", []cipherTest{
{"I am a panda bear.", "qayaeaagaciai", "iamapandabear"},
}},
{"duxrceqyaimciuucnelkeoxjhdyduu", []cipherTest{
{"Diffie Hellman", "gccwkixcltycv", "diffiehellman"},
}},
{"qgbvno", []cipherTest{
{"cof-FEE, 123!", "sugars", "coffee"},
}},
}
func TestVigenere(t *testing.T) {
for _, test := range vtests {
v := NewVigenere(test.key)
if v == nil {
t.Fatalf("NewVigenere(%q) returned nil, want non-nil Cipher",
test.key)
}
testCipher(fmt.Sprintf("Vigenere(%q)", test.key), v, test.tests, t)
}
// invalid keys
for _, k := range []string{"", "a", "aa", "no way", "CAT", "3", "and,"} {
if NewVigenere(k) != nil {
t.Fatalf("NewVigenere(%q) returned non-nil, "+
"Want nil return for invalid argument.", k)
}
}
}
// Benchmark combined time to run all tests.
// Note other ciphers test different data; times cannot be compared.
func BenchmarkEncodeCaesar(b *testing.B) {
c := NewCaesar()
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, test := range caesarTests {
c.Encode(test.source)
}
}
}
func BenchmarkDecodeCaesar(b *testing.B) {
c := NewCaesar()
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, test := range caesarTests {
c.Decode(test.cipher)
}
}
}
func BenchmarkNewShift(b *testing.B) {
for i := 0; i < b.N; i++ {
for s := -27; s <= 27; s++ {
NewShift(s)
}
}
}
func BenchmarkEncodeShift(b *testing.B) {
s := NewShift(5)
all := append(caesarTests, NSATests...)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, test := range all {
s.Encode(test.source)
}
}
}
func BenchmarkDecodeShift(b *testing.B) {
s := NewShift(5)
all := append(caesarTests, NSATests...)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, test := range all {
s.Decode(test.cipher)
}
}
}
func BenchmarkNewVigenere(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, test := range vtests {
NewVigenere(test.key)
}
}
}
func BenchmarkEncVigenere(b *testing.B) {
v := make([]Cipher, len(vtests))
for i, test := range vtests {
v[i] = NewVigenere(test.key)
if v[i] == nil {
b.Skip("Benchmark requires valid Vigenere test cases")
}
}
b.ResetTimer()
for j := 0; j < b.N; j++ {
for i, test := range vtests {
vi := v[i]
for _, test := range test.tests {
vi.Encode(test.source)
}
}
}
}
func BenchmarkDecVigenere(b *testing.B) {
v := make([]Cipher, len(vtests))
for i, test := range vtests {
v[i] = NewVigenere(test.key)
if v[i] == nil {
b.Skip("Benchmark requires valid Vigenere test cases")
}
}
b.ResetTimer()
for j := 0; j < b.N; j++ {
for i, test := range vtests {
vi := v[i]
for _, test := range test.tests {
vi.Decode(test.cipher)
}
}
}
}