boltease/be_encode.go

916 lines
23 KiB
Go

package boltease
import (
"encoding"
"fmt"
"math"
"reflect"
"slices"
"sort"
"strconv"
"strings"
"sync"
)
func (db *DB) Save(path []string, k string, v any) error {
e := newWriterState(db, path)
defer writerStatePool.Put(e)
err := e.marshal(db, path, k, v)
if err != nil {
return err
}
return nil
}
// Marshaler is the interfacce implemented by types that
// can marshal themselves into a db
type Marshaler interface {
MarshalBoltease(db *DB, path []string, key string) error
}
// An UnsupportedTypeError is returned by [Marsha] when attempting
// to write an unsupported value type.
type UnsupportedTypeError struct {
Type reflect.Type
}
func (e *UnsupportedTypeError) Error() string {
return "boltease: unsupported type: " + e.Type.String()
}
// An UnsupportedValueError is returned by [Marshal] when attempting
// to encode an unsupported value.
type UnsupportedValueError struct {
Value reflect.Value
Str string
}
func (e *UnsupportedValueError) Error() string {
return "boltease: unsupported value: " + e.Str
}
// A MarshalError represents an error from calling a
// [Marshaler.MarshelBoltease] or [encoding.TextMarshaler.MarshalText] method.
type MarshalerError struct {
Type reflect.Type
Err error
sourceFunc string
}
func (e *MarshalerError) Error() string {
srcFunc := e.sourceFunc
if srcFunc == "" {
srcFunc = "MarshalBoltease"
}
return "boltease: error calling " + srcFunc +
" for type " + e.Type.String() +
": " + e.Err.Error()
}
// Unwrap returns the underlying error.
func (e *MarshalerError) Unwrap() error { return e.Err }
type writerState struct {
db *DB
path []string
ptrLevel uint
ptrSeen map[any]struct{}
}
func (es *writerState) WriteString(key, val string) error {
return es.Write([]byte(key), []byte(val))
}
func (es *writerState) Write(key []byte, val []byte) error {
return es.db.SetBBytes(es.path, key, val)
}
const startDetectingCyclesAfter = 1000
var writerStatePool sync.Pool
func newWriterState(db *DB, path []string) *writerState {
if v := writerStatePool.Get(); v != nil {
e := v.(*writerState)
if len(e.ptrSeen) > 0 {
panic("ptrWriter.write should have emptied ptrSeen via defers")
}
e.ptrLevel = 0
return e
}
return &writerState{
db: db,
path: path,
ptrSeen: make(map[any]struct{}),
}
}
// bolteaseError is an error wrapper type for internal use only.
// Panics with errors are wrapped in bolteaseError so that the top-level recover
// can distinguish intentional panics from this package.
type bolteaseError struct{ error }
func (e *writerState) marshal(db *DB, path []string, k string, v any) (err error) {
defer func() {
if r := recover(); r != nil {
if be, ok := r.(bolteaseError); ok {
err = be.error
} else {
panic(r)
}
}
}()
e.reflectValue(k, reflect.ValueOf(v))
return nil
}
// error aborts the encoding by panicking with err wrapped in bolteaseError.
func (e *writerState) error(err error) {
panic(bolteaseError{err})
}
func isEmptyValue(v reflect.Value) bool {
switch v.Kind() {
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
return v.Len() == 0
case reflect.Bool,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Float32, reflect.Float64,
reflect.Interface, reflect.Pointer:
return v.IsZero()
}
return false
}
func (e *writerState) reflectValue(k string, v reflect.Value) {
valueWriter(v)(e, k, v)
}
type writerFunc func(e *writerState, k string, v reflect.Value)
var writerCache sync.Map // map[reflect.Type]writerFunc
func valueWriter(v reflect.Value) writerFunc {
if !v.IsValid() {
return invalidValueWriter
}
return typeWriter(v.Type())
}
func typeWriter(t reflect.Type) writerFunc {
if fi, ok := writerCache.Load(t); ok {
return fi.(writerFunc)
}
// To deal with recursive types, populate the map with an
// indirect func before we build it. This type waits on the
// real func (f) to be ready and then calls it. This indirect
// func is only used for recursive types.
var (
wg sync.WaitGroup
f writerFunc
)
wg.Add(1)
fi, loaded := writerCache.LoadOrStore(t, writerFunc(func(e *writerState, k string, v reflect.Value) {
wg.Wait()
f(e, k, v)
}))
if loaded {
return fi.(writerFunc)
}
// Compute the real writer and replace the indirect func with it.
f = newTypeWriter(t, true)
wg.Done()
writerCache.Store(t, f)
return f
}
var (
marshalerType = reflect.TypeFor[Marshaler]()
textMarshalerType = reflect.TypeFor[encoding.TextMarshaler]()
)
// newTypeWriter constructs an writerFunc for a type.
// The returned writer only checks CanAddr when allowAddr is true.
func newTypeWriter(t reflect.Type, allowAddr bool) writerFunc {
// if we have a non-pointer value whose type implements
// Marshaler with a value receiver, then we're better off taking
// the address of the value - otherwise we end up with an
// allocation as we cast the value to an interface.
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) {
return newCondAddrWriter(addrMarshalerWriter, newTypeWriter(t, false))
}
if t.Implements(marshalerType) {
return marshalerWriter
}
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) {
return newCondAddrWriter(addrTextMarshalerWriter, newTypeWriter(t, false))
}
if t.Implements(textMarshalerType) {
return textMarshalerWriter
}
switch t.Kind() {
case reflect.Bool:
return boolWriter
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return intWriter
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintWriter
case reflect.Float32:
return float32Writer
case reflect.Float64:
return float64Writer
case reflect.String:
return stringWriter
case reflect.Interface:
return interfaceWriter
case reflect.Struct:
return newStructWriter(t)
case reflect.Map:
return newMapWriter(t)
case reflect.Slice:
return newSliceWriter(t)
case reflect.Array:
return newArrayWriter(t)
case reflect.Pointer:
return newPtrWriter(t)
default:
return unsupportedTypeWriter
}
}
func invalidValueWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, "null")
}
func marshalerWriter(e *writerState, k string, v reflect.Value) {
if v.Kind() == reflect.Pointer && v.IsNil() {
e.WriteString(k, "null")
return
}
m, ok := v.Interface().(Marshaler)
if !ok {
e.WriteString(k, "null")
return
}
err := m.MarshalBoltease(e.db, e.path, k)
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalBoltease"})
}
}
func addrMarshalerWriter(e *writerState, k string, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.WriteString(k, "null")
return
}
m := va.Interface().(Marshaler)
err := m.MarshalBoltease(e.db, e.path, k)
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalBoltease"})
}
}
func textMarshalerWriter(e *writerState, k string, v reflect.Value) {
if v.Kind() == reflect.Pointer && v.IsNil() {
e.WriteString(k, "null")
return
}
m, ok := v.Interface().(encoding.TextMarshaler)
if !ok {
e.WriteString(k, "null")
return
}
b, err := m.MarshalText()
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
}
e.Write([]byte(k), b)
}
func addrTextMarshalerWriter(e *writerState, k string, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.WriteString(k, "null")
return
}
m := va.Interface().(encoding.TextMarshaler)
b, err := m.MarshalText()
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
}
e.Write([]byte(k), b)
}
func boolWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatBool(v.Bool()))
}
func intWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatInt(v.Int(), 10))
}
func uintWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatUint(v.Uint(), 10))
}
type floatWriter int // number of bits
func (bits floatWriter) write(e *writerState, k string, v reflect.Value) {
f := v.Float()
if math.IsInf(f, 0) || math.IsNaN(f) {
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
}
// Connvert as if by ES6 number to string conversion.
// This matches most other JSON generators.
// See golang.org/issue/6384 and golang.org/issue/14135.
// Like fmt %g, but the exponent cutoffs are different
// and exponents themselves are not padded to two digits.
b := []byte{}
abs := math.Abs(f)
fmt := byte('f')
// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
if abs != 0 {
if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
fmt = 'e'
}
}
b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
if fmt == 'e' {
// clean up e-09 to e-9
n := len(b)
if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
b[n-2] = b[n-1]
b = b[:n-1]
}
}
e.Write([]byte(k), b)
}
var (
float32Writer = (floatWriter(32)).write
float64Writer = (floatWriter(64)).write
)
func stringWriter(e *writerState, k string, v reflect.Value) {
if v.Type() == numberType {
numStr := v.String()
// In Go1.5 the empty string writes to "0", while this is not a valid number literal
// we keep compatibility so check validity after this.
if numStr == "" {
numStr = "0" // Number's zero-val
}
if !isValidNumber(numStr) {
e.error(fmt.Errorf("boltease: invalid number literal %q", numStr))
}
b := []byte{}
b = append(b, numStr...)
e.Write([]byte(k), b)
return
}
e.Write([]byte(k), []byte(v.String()))
}
func isValidNumber(s string) bool {
// This function implements the JSON numbers grammar.
// See https://tools.ietf.org/html/rfc7159#section-6
// and https://www.json.org/img/number.png
if s == "" {
return false
}
// Optional -
if s[0] == '-' {
s = s[1:]
if s == "" {
return false
}
}
// Digits
switch {
default:
return false
case s[0] == '0':
s = s[1:]
case '1' <= s[0] && s[0] <= '9':
s = s[1:]
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
}
}
// . followed by 1 or more digits.
if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
s = s[2:]
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
}
}
// e or E followed by an optional - or + and
// 1 or more digits.
if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
s = s[1:]
if s[0] == '+' || s[0] == '-' {
s = s[1:]
if s == "" {
return false
}
}
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
}
}
// Make sure we are at the end.
return s == ""
}
func interfaceWriter(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
e.reflectValue(k, v.Elem())
}
func unsupportedTypeWriter(e *writerState, k string, v reflect.Value) {
e.error(&UnsupportedTypeError{v.Type()})
}
type structWriter struct {
fields structFields
}
type structFields struct {
list []field
byExactName map[string]*field
byFoldedName map[string]*field
}
// Write a struct at e.path
func (se structWriter) write(e *writerState, k string, v reflect.Value) {
// Add the key for this struct to the writerState
e.path = append(e.path, k)
// Pop it when we're done.
defer func() { e.path = e.path[:len(e.path)-1] }()
FieldLoop:
for i := range se.fields.list {
f := &se.fields.list[i]
// Find the nested struct field by following f.index.
fv := v
for _, i := range f.index {
if fv.Kind() == reflect.Pointer {
if fv.IsNil() {
continue FieldLoop
}
fv = fv.Elem()
}
fv = fv.Field(i)
}
if f.omitEmpty && isEmptyValue(fv) {
continue
}
f.writer(e, f.name, fv)
}
}
func newStrucWriter(t reflect.Type) writerFunc {
se := structWriter{fields: cachedTypeFields(t)}
return se.write
}
func newStructWriter(t reflect.Type) writerFunc {
se := structWriter{fields: cachedTypeFields(t)}
return se.write
}
type mapWriter struct {
elemEnc writerFunc
}
func (me mapWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
ptr := v.UnsafePointer()
if _, ok := e.ptrSeen[ptr]; ok {
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
}
e.ptrSeen[ptr] = struct{}{}
defer delete(e.ptrSeen, ptr)
}
// Extract and sort the keys.
var (
sv = make([]reflectWithString, v.Len())
mi = v.MapRange()
err error
)
for i := 0; mi.Next(); i++ {
if sv[i].ks, err = resolveKeyName(mi.Key()); err != nil {
e.error(fmt.Errorf("boltease: encoding error for type %q: %q", v.Type().String(), err.Error()))
}
sv[i].v = mi.Value()
}
slices.SortFunc(sv, func(i, j reflectWithString) int {
return strings.Compare(i.ks, j.ks)
})
for i, kv := range sv {
me.elemEnc(e, sv[i].ks, kv.v)
}
e.ptrLevel--
}
func newMapWriter(t reflect.Type) writerFunc {
switch t.Key().Kind() {
case reflect.String,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
default:
if !t.Key().Implements(textMarshalerType) {
return unsupportedTypeWriter
}
}
me := mapWriter{typeWriter(t.Elem())}
return me.write
}
func writeByteSlice(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
e.Write([]byte(k), v.Bytes())
}
// sliceWriter just wraps an arrayWriter, checking to make sure the value isn't nil.
type sliceWriter struct {
arrayWriter writerFunc
}
func (se sliceWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
// Here we use a struct to memorize the pointer to the first element of the slice
// and its length.
ptr := struct {
ptr interface{} // always an unsafe.Pointer, but avoids a dependency on package unsafe
len int
}{v.UnsafePointer(), v.Len()}
if _, ok := e.ptrSeen[ptr]; ok {
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
}
e.ptrSeen[ptr] = struct{}{}
defer delete(e.ptrSeen, ptr)
}
se.arrayWriter(e, k, v)
e.ptrLevel--
}
func newSliceWriter(t reflect.Type) writerFunc {
// Byte slices get special treatment; arrays don't.
if t.Elem().Kind() == reflect.Uint8 {
p := reflect.PointerTo(t.Elem())
if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
return writeByteSlice
}
}
enc := sliceWriter{newArrayWriter(t)}
return enc.write
}
type arrayWriter struct {
elemWrite writerFunc
}
func (ae arrayWriter) write(e *writerState, k string, v reflect.Value) {
e.path = append(e.path, k)
defer func() { e.path = e.path[:len(e.path)-1] }()
n := v.Len()
for i := 0; i < n; i++ {
ae.elemWrite(e, strconv.Itoa(i), v.Index(i))
}
}
func newArrayWriter(t reflect.Type) writerFunc {
w := arrayWriter{typeWriter(t.Elem())}
return w.write
}
type ptrWriter struct {
elemWrite writerFunc
}
func (pe ptrWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
ptr := v.Interface()
if _, ok := e.ptrSeen[ptr]; ok {
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
}
e.ptrSeen[ptr] = struct{}{}
defer delete(e.ptrSeen, ptr)
}
pe.elemWrite(e, k, v.Elem())
e.ptrLevel--
}
func newPtrWriter(t reflect.Type) writerFunc {
w := ptrWriter{typeWriter(t.Elem())}
return w.write
}
type condAddrWriter struct {
canAddrWrite, elseWrite writerFunc
}
func (ce condAddrWriter) write(e *writerState, k string, v reflect.Value) {
if v.CanAddr() {
ce.canAddrWrite(e, k, v)
} else {
ce.elseWrite(e, k, v)
}
}
// newCondAddrWriter returns a writer that checks whether its value
// CanAddr and delegates to canAddrWrite if so, else to elseWrite.
func newCondAddrWriter(canAddrWrite, elseWrite writerFunc) writerFunc {
w := condAddrWriter{canAddrWrite: canAddrWrite, elseWrite: elseWrite}
return w.write
}
func typeByIndex(t reflect.Type, index []int) reflect.Type {
for _, i := range index {
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
t = t.Field(i).Type
}
return t
}
type reflectWithString struct {
v reflect.Value
ks string
}
func resolveKeyName(k reflect.Value) (string, error) {
if k.Kind() == reflect.String {
return k.String(), nil
}
if tm, ok := k.Interface().(encoding.TextMarshaler); ok {
if k.Kind() == reflect.Pointer && k.IsNil() {
return "", nil
}
buf, err := tm.MarshalText()
return string(buf), err
}
switch k.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(k.Int(), 10), nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return strconv.FormatUint(k.Uint(), 10), nil
}
panic("unexpected map key type")
}
// A field represents a single field found in a struct.
type field struct {
name string
nameBytes []byte
tag bool
index []int
typ reflect.Type
omitEmpty bool
writer writerFunc
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that boltease should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
// Anonymous fields to explore at the current level and the next
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// /since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
tag := sf.Tag.Get("boltease")
if tag == "-" {
continue
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),
}
field.nameBytes = []byte(field.name)
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so thta the annihilation code will see a duplicate.
// it only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from boltease tag", then
// breaking ties with index sequence
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with boltease tags are promoted.
//
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with th ename of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
exactNameIndex := make(map[string]*field, len(fields))
foldedNameIndex := make(map[string]*field, len(fields))
for i, field := range fields {
exactNameIndex[field.name] = &fields[i]
// For historical reasons, first folded match takes precedence.
if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok {
foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i]
}
}
return structFields{fields, exactNameIndex, foldedNameIndex}
}
// dominantField looks through the fields, all of which are known to have the
// same name, to find the single field that dominates the others using Go's
// embedding rules, modified by the presence of boltease tags. if there are
// multiple top-level fields, the boolean will be false: This condition is an
// error in Go and we skip all fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return fields[0], true
}
var fieldCache sync.Map // map[reflect.Type]structFields
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) structFields {
if f, ok := fieldCache.Load(t); ok {
return f.(structFields)
}
f, _ := fieldCache.LoadOrStore(t, typeFields(t))
return f.(structFields)
}