Working on decode now

This commit is contained in:
Brian Buller 2024-11-12 10:13:54 -06:00
parent 741eac472a
commit 5a85c195a7
6 changed files with 532 additions and 375 deletions

12
be_decode.go Normal file
View File

@ -0,0 +1,12 @@
package boltease
import "reflect"
func (db *DB) Load(path []string, dest any) error {
return nil
}
// A Number represents a Boltease number literal.
type Number string
var numberType = reflect.TypeFor[Number]()

View File

@ -6,16 +6,17 @@ import (
"math"
"reflect"
"slices"
"sort"
"strconv"
"strings"
"sync"
)
func (db *DB) Save(path []string, v any) error {
func (db *DB) Save(path []string, k string, v any) error {
e := newWriterState(db, path)
defer writerStatePool.Put(e)
err := e.marshal(db, path, v, encOpts{})
err := e.marshal(db, path, k, v)
if err != nil {
return err
}
@ -25,11 +26,11 @@ func (db *DB) Save(path []string, v any) error {
// Marshaler is the interfacce implemented by types that
// can marshal themselves into a db
type Marshaler interface {
MarshalBoltease(db *DB, path []string) error
MarshalBoltease(db *DB, path []string, key string) error
}
// An UnsupportedTypeError is returned by [Marsha] when attempting
// to encode an unsupported value type.
// to write an unsupported value type.
type UnsupportedTypeError struct {
Type reflect.Type
}
@ -38,6 +39,17 @@ func (e *UnsupportedTypeError) Error() string {
return "boltease: unsupported type: " + e.Type.String()
}
// An UnsupportedValueError is returned by [Marshal] when attempting
// to encode an unsupported value.
type UnsupportedValueError struct {
Value reflect.Value
Str string
}
func (e *UnsupportedValueError) Error() string {
return "boltease: unsupported value: " + e.Str
}
// A MarshalError represents an error from calling a
// [Marshaler.MarshelBoltease] or [encoding.TextMarshaler.MarshalText] method.
type MarshalerError struct {
@ -66,8 +78,8 @@ type writerState struct {
ptrSeen map[any]struct{}
}
func (es *writerState) WriteString(val string) error {
return es.Write(key, []byte(val))
func (es *writerState) WriteString(key, val string) error {
return es.Write([]byte(key), []byte(val))
}
func (es *writerState) Write(key []byte, val []byte) error {
@ -82,7 +94,7 @@ func newWriterState(db *DB, path []string) *writerState {
if v := writerStatePool.Get(); v != nil {
e := v.(*writerState)
if len(e.ptrSeen) > 0 {
panic("ptrEncoder.encode should have emptied ptrSeen via defers")
panic("ptrWriter.write should have emptied ptrSeen via defers")
}
e.ptrLevel = 0
return e
@ -99,7 +111,7 @@ func newWriterState(db *DB, path []string) *writerState {
// can distinguish intentional panics from this package.
type bolteaseError struct{ error }
func (e *writerState) marshal(db *DB, path []string, v any, opts writerOpts) (err error) {
func (e *writerState) marshal(db *DB, path []string, k string, v any) (err error) {
defer func() {
if r := recover(); r != nil {
if be, ok := r.(bolteaseError); ok {
@ -109,7 +121,7 @@ func (e *writerState) marshal(db *DB, path []string, v any, opts writerOpts) (er
}
}
}()
e.reflectValue(reflect.ValueOf(v), opts)
e.reflectValue(k, reflect.ValueOf(v))
return nil
}
@ -132,16 +144,11 @@ func isEmptyValue(v reflect.Value) bool {
return false
}
func (e *writerState) reflectValue(v reflect.Value, opts writerOpts) {
valueWriter(v)(e, v, opts)
func (e *writerState) reflectValue(k string, v reflect.Value) {
valueWriter(v)(e, k, v)
}
type writerOpts struct {
// quoted causes primitive fields to be encoded inside Boltease strings.
quoted bool
}
type writerFunc func(e *writerState, v reflect.Value, opts writerOpts)
type writerFunc func(e *writerState, k string, v reflect.Value)
var writerCache sync.Map // map[reflect.Type]writerFunc
@ -166,15 +173,15 @@ func typeWriter(t reflect.Type) writerFunc {
f writerFunc
)
wg.Add(1)
fi, loaded := writerCache.LoadOrStore(t, writerFunc(func(e *writerState, v reflect.Value, opts writerOpts) {
fi, loaded := writerCache.LoadOrStore(t, writerFunc(func(e *writerState, k string, v reflect.Value) {
wg.Wait()
f(e, v, opts)
f(e, k, v)
}))
if loaded {
return fi.(writerFunc)
}
// Compute the real encoder and replace the indirect func with it.
// Compute the real writer and replace the indirect func with it.
f = newTypeWriter(t, true)
wg.Done()
writerCache.Store(t, f)
@ -186,133 +193,135 @@ var (
textMarshalerType = reflect.TypeFor[encoding.TextMarshaler]()
)
// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
// newTypeWriter constructs an writerFunc for a type.
// The returned writer only checks CanAddr when allowAddr is true.
func newTypeWriter(t reflect.Type, allowAddr bool) writerFunc {
// if we have a non-pointer value whose type implements
// Marshaler with a value receiver, then we're better off taking
// the address of the value - otherwise we end up with an
// allocation as we cast the value to an interface.
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) {
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
return newCondAddrWriter(addrMarshalerWriter, newTypeWriter(t, false))
}
if t.Implements(marshalerType) {
return marshalerEncoder
return marshalerWriter
}
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) {
return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
return newCondAddrWriter(addrTextMarshalerWriter, newTypeWriter(t, false))
}
if t.Implements(textMarshalerType) {
return textMarshalerEncoder
return textMarshalerWriter
}
switch t.Kind() {
case reflect.Bool:
return boolEncoder
return boolWriter
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return intEncoder
return intWriter
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintEncoder
return uintWriter
case reflect.Float32:
return float32Encoder
return float32Writer
case reflect.Float64:
return float64Encoder
return float64Writer
case reflect.String:
return stringEncoder
return stringWriter
case reflect.Interface:
return interfaceEncoder
return interfaceWriter
case reflect.Struct:
return newStructEncoder(t)
return newStructWriter(t)
case reflect.Map:
return newMapEncoder(t)
return newMapWriter(t)
case reflect.Slice:
return newSliceEncoder(t)
return newSliceWriter(t)
case reflect.Array:
return newArrayEncoder(t)
return newArrayWriter(t)
case reflect.Pointer:
return newPtrEncoder(t)
return newPtrWriter(t)
default:
return unsupportedTypeEncoder
return unsupportedTypeWriter
}
}
func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
e.WriteString("null")
func invalidValueWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, "null")
}
func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
func marshalerWriter(e *writerState, k string, v reflect.Value) {
if v.Kind() == reflect.Pointer && v.IsNil() {
e.WriteString("null")
e.WriteString(k, "null")
return
}
m, ok := v.Interface().(Marshaler)
if !ok {
e.WriteString("null")
e.WriteString(k, "null")
return
}
err := m.MarshalBoltease(e.db, e.path)
err := m.MarshalBoltease(e.db, e.path, k)
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalBoltease"})
}
}
func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
func addrMarshalerWriter(e *writerState, k string, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.WriteString("null")
e.WriteString(k, "null")
return
}
m := va.Interface().(Marshaler)
err := m.MarshalBoltease()
err := m.MarshalBoltease(e.db, e.path, k)
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalBoltease"})
}
}
func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
func textMarshalerWriter(e *writerState, k string, v reflect.Value) {
if v.Kind() == reflect.Pointer && v.IsNil() {
e.WriteString("null")
e.WriteString(k, "null")
return
}
m, ok := v.Interface().(encoding.TextMarshaler)
if !ok {
e.WriteString("null")
e.WriteString(k, "null")
return
}
b, err := m.MarshalText()
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
}
e.Write(b)
e.Write([]byte(k), b)
}
func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
b := []byte{}
b = mayAppendQuote(b, opts.quoted)
b = strconv.AppendBool(b, v.Bool())
b = mayAppendQuote(b, opts.quoted)
e.Write(b)
func addrTextMarshalerWriter(e *writerState, k string, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.WriteString(k, "null")
return
}
m := va.Interface().(encoding.TextMarshaler)
b, err := m.MarshalText()
if err != nil {
e.error(&MarshalerError{v.Type(), err, "MarshalText"})
}
e.Write([]byte(k), b)
}
func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
b := []byte{}
b = mayAppendQuote(b, opts.quoted)
b = strconv.AppendInt(b, v.Int(), 10)
b = mayAppendQuote(b, opts.quoted)
e.Write(b)
func boolWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatBool(v.Bool()))
}
func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
b := []byte{}
b = mayAppendQuote(b, opts.quoted)
b = strconv.AppendUint(b, v.Uint(), 10)
b = mayAppendQuote(b, opts.quoted)
e.Write(b)
func intWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatInt(v.Int(), 10))
}
type floatEncoder int // number of bits
func uintWriter(e *writerState, k string, v reflect.Value) {
e.WriteString(k, strconv.FormatUint(v.Uint(), 10))
}
func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
type floatWriter int // number of bits
func (bits floatWriter) write(e *writerState, k string, v reflect.Value) {
f := v.Float()
if math.IsInf(f, 0) || math.IsNaN(f) {
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
@ -324,7 +333,6 @@ func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
// Like fmt %g, but the exponent cutoffs are different
// and exponents themselves are not padded to two digits.
b := []byte{}
b = mayAppendQuote(b, opts.quoted)
abs := math.Abs(f)
fmt := byte('f')
// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
@ -342,39 +350,31 @@ func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
b = b[:n-1]
}
}
b = mayAppendQuote(b, opts.quoted)
e.Write(b)
e.Write([]byte(k), b)
}
var (
float32Encoder = (floatEncoder(32)).encode
float64Encoder = (floatEncoder(64)).encode
float32Writer = (floatWriter(32)).write
float64Writer = (floatWriter(64)).write
)
func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
func stringWriter(e *writerState, k string, v reflect.Value) {
if v.Type() == numberType {
numStr := v.String()
// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
// In Go1.5 the empty string writes to "0", while this is not a valid number literal
// we keep compatibility so check validity after this.
if numStr == "" {
numStr = "0" // Number's zero-val
}
if !isValidNumber(numStr) {
e.error(fmt.Errorf("json: invalid number literal %q", numStr))
e.error(fmt.Errorf("boltease: invalid number literal %q", numStr))
}
b := []byte{}
b = mayAppendQuote(b, opts.quoted)
b = append(b, numStr...)
b = mayAppendQuote(b, opts.quoted)
e.Write(b)
e.Write([]byte(k), b)
return
}
if opts.quoted {
b := appendString(nil, v.String(), opts.escapeHTML)
e.Write(b) // no need to escape again since it is already escaped
} else {
e.Write([]byte(v.String()))
}
e.Write([]byte(k), []byte(v.String()))
}
func isValidNumber(s string) bool {
@ -436,19 +436,19 @@ func isValidNumber(s string) bool {
return s == ""
}
func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
func interfaceWriter(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString("null")
e.WriteString(k, "null")
return
}
e.reflectValue(v.Elem(), opts)
e.reflectValue(k, v.Elem())
}
func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
func unsupportedTypeWriter(e *writerState, k string, v reflect.Value) {
e.error(&UnsupportedTypeError{v.Type()})
}
type structEncoder struct {
type structWriter struct {
fields structFields
}
@ -458,7 +458,13 @@ type structFields struct {
byFoldedName map[string]*field
}
func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
// Write a struct at e.path
func (se structWriter) write(e *writerState, k string, v reflect.Value) {
// Add the key for this struct to the writerState
e.path = append(e.path, k)
// Pop it when we're done.
defer func() { e.path = e.path[:len(e.path)-1] }()
FieldLoop:
for i := range se.fields.list {
f := &se.fields.list[i]
@ -473,31 +479,34 @@ FieldLoop:
}
fv = fv.Field(i)
}
if f.omitEmpty && isEmptyValue(fv) {
continue
}
opts.quoted = f.quoted
f.encoder(e, fv, opts)
f.writer(e, f.name, fv)
}
}
func newStrucEncoder(t reflect.Type) encoderFunc {
se := structEncoder{fields: cachedTypeFields(t)}
return se.encode
func newStrucWriter(t reflect.Type) writerFunc {
se := structWriter{fields: cachedTypeFields(t)}
return se.write
}
type mapEncoder struct {
elemEnc encoderFunc
func newStructWriter(t reflect.Type) writerFunc {
se := structWriter{fields: cachedTypeFields(t)}
return se.write
}
func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
type mapWriter struct {
elemEnc writerFunc
}
func (me mapWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString("null")
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrEncoder.encode calls deep;
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
ptr := v.UnsafePointer()
if _, ok := e.ptrSeen[ptr]; ok {
@ -524,26 +533,173 @@ func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
})
for i, kv := range sv {
kv.ks, me.elemEnc(e, kv.v, opts))
me.elemEnc(e, sv[i].ks, kv.v)
}
e.ptrLevel--
}
func newMapEncoder(t reflect.Type) encoderFunc {
func newMapWriter(t reflect.Type) writerFunc {
switch t.Key().Kind() {
case reflect.String,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
default:
if !t.Key().Implements(textMarshalerType) {
return unsupportedTypeEncoder
return unsupportedTypeWriter
}
}
me := mapEncoder{typeEncoder(t.Elem())}
return me.encode
me := mapWriter{typeWriter(t.Elem())}
return me.write
}
// TODO: HERE: json/encode.go:793
func writeByteSlice(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
e.Write([]byte(k), v.Bytes())
}
// sliceWriter just wraps an arrayWriter, checking to make sure the value isn't nil.
type sliceWriter struct {
arrayWriter writerFunc
}
func (se sliceWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
// Here we use a struct to memorize the pointer to the first element of the slice
// and its length.
ptr := struct {
ptr interface{} // always an unsafe.Pointer, but avoids a dependency on package unsafe
len int
}{v.UnsafePointer(), v.Len()}
if _, ok := e.ptrSeen[ptr]; ok {
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
}
e.ptrSeen[ptr] = struct{}{}
defer delete(e.ptrSeen, ptr)
}
se.arrayWriter(e, k, v)
e.ptrLevel--
}
func newSliceWriter(t reflect.Type) writerFunc {
// Byte slices get special treatment; arrays don't.
if t.Elem().Kind() == reflect.Uint8 {
p := reflect.PointerTo(t.Elem())
if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
return writeByteSlice
}
}
enc := sliceWriter{newArrayWriter(t)}
return enc.write
}
type arrayWriter struct {
elemWrite writerFunc
}
func (ae arrayWriter) write(e *writerState, k string, v reflect.Value) {
e.path = append(e.path, k)
defer func() { e.path = e.path[:len(e.path)-1] }()
n := v.Len()
for i := 0; i < n; i++ {
ae.elemWrite(e, strconv.Itoa(i), v.Index(i))
}
}
func newArrayWriter(t reflect.Type) writerFunc {
w := arrayWriter{typeWriter(t.Elem())}
return w.write
}
type ptrWriter struct {
elemWrite writerFunc
}
func (pe ptrWriter) write(e *writerState, k string, v reflect.Value) {
if v.IsNil() {
e.WriteString(k, "null")
return
}
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
// We're a large number of nested ptrWriter.write calls deep;
// start checking if we've run into a pointer cycle.
ptr := v.Interface()
if _, ok := e.ptrSeen[ptr]; ok {
e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
}
e.ptrSeen[ptr] = struct{}{}
defer delete(e.ptrSeen, ptr)
}
pe.elemWrite(e, k, v.Elem())
e.ptrLevel--
}
func newPtrWriter(t reflect.Type) writerFunc {
w := ptrWriter{typeWriter(t.Elem())}
return w.write
}
type condAddrWriter struct {
canAddrWrite, elseWrite writerFunc
}
func (ce condAddrWriter) write(e *writerState, k string, v reflect.Value) {
if v.CanAddr() {
ce.canAddrWrite(e, k, v)
} else {
ce.elseWrite(e, k, v)
}
}
// newCondAddrWriter returns a writer that checks whether its value
// CanAddr and delegates to canAddrWrite if so, else to elseWrite.
func newCondAddrWriter(canAddrWrite, elseWrite writerFunc) writerFunc {
w := condAddrWriter{canAddrWrite: canAddrWrite, elseWrite: elseWrite}
return w.write
}
func typeByIndex(t reflect.Type, index []int) reflect.Type {
for _, i := range index {
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
t = t.Field(i).Type
}
return t
}
type reflectWithString struct {
v reflect.Value
ks string
}
func resolveKeyName(k reflect.Value) (string, error) {
if k.Kind() == reflect.String {
return k.String(), nil
}
if tm, ok := k.Interface().(encoding.TextMarshaler); ok {
if k.Kind() == reflect.Pointer && k.IsNil() {
return "", nil
}
buf, err := tm.MarshalText()
return string(buf), err
}
switch k.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(k.Int(), 10), nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return strconv.FormatUint(k.Uint(), 10), nil
}
panic("unexpected map key type")
}
// A field represents a single field found in a struct.
type field struct {
@ -554,7 +710,206 @@ type field struct {
index []int
typ reflect.Type
omitEmpty bool
quoted bool
encoder encoderFunc
writer writerFunc
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that boltease should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
// Anonymous fields to explore at the current level and the next
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// /since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
tag := sf.Tag.Get("boltease")
if tag == "-" {
continue
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),
}
field.nameBytes = []byte(field.name)
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so thta the annihilation code will see a duplicate.
// it only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from boltease tag", then
// breaking ties with index sequence
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with boltease tags are promoted.
//
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with th ename of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
exactNameIndex := make(map[string]*field, len(fields))
foldedNameIndex := make(map[string]*field, len(fields))
for i, field := range fields {
exactNameIndex[field.name] = &fields[i]
// For historical reasons, first folded match takes precedence.
if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok {
foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i]
}
}
return structFields{fields, exactNameIndex, foldedNameIndex}
}
// dominantField looks through the fields, all of which are known to have the
// same name, to find the single field that dominates the others using Go's
// embedding rules, modified by the presence of boltease tags. if there are
// multiple top-level fields, the boolean will be false: This condition is an
// error in Go and we skip all fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return fields[0], true
}
var fieldCache sync.Map // map[reflect.Type]structFields
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) structFields {
if f, ok := fieldCache.Load(t); ok {
return f.(structFields)
}
f, _ := fieldCache.LoadOrStore(t, typeFields(t))
return f.(structFields)
}

View File

@ -4,20 +4,19 @@ import (
"errors"
"fmt"
"reflect"
"sort"
"sync"
"unicode"
"unicode/utf8"
)
type any = interface{}
func (b *DB) SaveOld(path []string, src any) error {
/*
func (b *DB) Save(path []string, key string, src any) error {
t := reflect.TypeOf(src)
if t.Kind() == reflect.Pointer {
// Save the actual struct
elem := reflect.ValueOf(src).Elem()
return b.Save(path, elem.Interface())
return b.Save(path, key, elem.Interface())
}
if t.Kind() == reflect.Struct {
@ -48,6 +47,7 @@ func (b *DB) SaveOld(path []string, src any) error {
}
return nil
}
*/
func (b *DB) LoadOld(path []string, dest any) error {
destValue := reflect.ValueOf(dest)
@ -212,220 +212,6 @@ func ReflectValueToInterface(val reflect.Value) interface{} {
}
}
// A field represents a single field found in a struct.
type field struct {
name string
nameBytes []byte // []byte(name)
tag bool
index []int
typ reflect.Type
omitEmpty bool
}
// byIndex sorts fields by index sequence
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
type structFields struct {
list []field
byExactName map[string]*field
byFoldedName map[string]*field
}
// typeFields returns a list of fields that JSON should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
// Anonymous fields to explore at the current level and the next
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// /since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
tag := sf.Tag.Get("boltease")
if tag == "-" {
continue
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),
}
field.nameBytes = []byte(field.name)
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so thta the annihilation code will see a duplicate.
// it only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from boltease tag", then
// breaking ties with index sequence
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with boltease tags are promoted.
//
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with th ename of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
exactNameIndex := make(map[string]*field, len(fields))
foldedNameIndex := make(map[string]*field, len(fields))
for i, field := range fields {
exactNameIndex[field.name] = &fields[i]
// For historical reasons, first folded match takes precedence.
if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok {
foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i]
}
}
return structFields{fields, exactNameIndex, foldedNameIndex}
}
// dominantField looks through the fields, all of which are known to have the
// same name, to find the single field that dominates the others using Go's
// embedding rules, modified by the presence of boltease tags. if there are
// multiple top-level fields, the boolean will be false: This condition is an
// error in Go and we skip all fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return fields[0], true
}
var fieldCache sync.Map // map[reflect.Type]structFields
func cachedTypeFields(t reflect.Type) structFields {
if f, ok := fieldCache.Load(t); ok {
return f.(structFields)
}
f, _ := fieldCache.LoadOrStore(t, typeFields(t))
return f.(structFields)
}
// foldName returns a folded string such that foldName(x) == foldName(y)
// is identical to bytes.EqualFold(x, y).
func foldName(in []byte) []byte {

View File

@ -9,14 +9,14 @@ import (
)
func main() {
//example1()
//fmt.Println()
example2()
example1()
// fmt.Println()
// example2()
}
func example1() {
fmt.Println("# Example 1")
db, err := boltease.Create("example.db", 0600, nil)
db, err := boltease.Create("example.db", 0o600, nil)
if err != nil {
fmt.Printf("Error Opening File: %s\n", err.Error())
os.Exit(1)
@ -24,7 +24,8 @@ func example1() {
fmt.Println("## Saving Struct")
err = db.Save(
[]string{"examples", "example1"},
[]string{"examples"},
"example1",
ExampleType{
Name: "Example 1",
Age: 5,
@ -34,6 +35,7 @@ func example1() {
os.Exit(1)
}
/*
fmt.Println("## Example 1-1: Simple")
var v string
err = db.GetForInterface([]string{"examples", "example1"}, "name", &v)
@ -69,11 +71,12 @@ func example1() {
&newStruct,
)
fmt.Println(newStruct)
*/
}
func example2() {
fmt.Println("# Example 2")
db, err := boltease.Create("example.db", 0600, nil)
db, err := boltease.Create("example.db", 0o600, nil)
if err != nil {
fmt.Printf("Error Opening File: %s\n", err.Error())
os.Exit(1)
@ -81,7 +84,8 @@ func example2() {
fmt.Println("## Saving Struct")
num := 12345
err = db.Save(
[]string{"examples", "example2"},
[]string{"examples"},
"example2",
&ExampleType2{
Name: "Example 2",
Age: 20,

2
go.mod
View File

@ -1,6 +1,6 @@
module git.bullercodeworks.com/brian/boltease
go 1.16
go 1.22
require (
github.com/boltdb/bolt v1.3.1

View File

@ -26,7 +26,7 @@ func isValidTag(s string) bool {
// tag, or the empty string. It does not include the leading comma
type tagOptions string
// parseTag splits a struct field's boltease tag into it sname and
// parseTag splits a struct field's boltease tag into it's name and
// comma-separated options.
func parseTag(tag string) (string, tagOptions) {
tag, opt, _ := strings.Cut(tag, ",")