blockchain-poc/transaction.go

228 lines
5.4 KiB
Go

package main
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/gob"
"encoding/hex"
"errors"
"fmt"
"math/big"
"strings"
)
const subsidy = 10
// Transaction represents a blockchain transaction
type Transaction struct {
ID []byte
Vin []TXInput
Vout []TXOutput
}
// IsCoinbase checks whether the transaction is a coinbase
func (tx Transaction) IsCoinbase() bool {
return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1
}
// Serialize returns a serialized transaction
func (tx *Transaction) Serialize() []byte {
var encoded bytes.Buffer
enc := gob.NewEncoder(&encoded)
err := enc.Encode(tx)
if err != nil {
exitWithError(err)
}
return encoded.Bytes()
}
// Hash returns the hash of the transaction
func (tx *Transaction) Hash() []byte {
var hash [32]byte
txCopy := *tx
txCopy.ID = []byte{}
hash = sha256.Sum256(txCopy.Serialize())
return hash[:]
}
// Sign signs each input of a transaction
func (tx *Transaction) Sign(privKey ecdsa.PrivateKey, prevTXs map[string]Transaction) {
if tx.IsCoinbase() {
return
}
for _, vin := range tx.Vin {
if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil {
exitWithError(errors.New("Previous transaction is not correct"))
}
}
txCopy := tx.TrimmedCopy()
for inID, vin := range txCopy.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
txCopy.ID = txCopy.Hash()
txCopy.Vin[inID].PubKey = nil
r, s, err := ecdsa.Sign(rand.Reader, &privKey, txCopy.ID)
if err != nil {
exitWithError(err)
}
signature := append(r.Bytes(), s.Bytes()...)
tx.Vin[inID].Signature = signature
}
}
// String returns a human-readable representation of a transaction
func (tx Transaction) String() string {
var lines []string
lines = append(lines, fmt.Sprintf("--- Transaction %x:", tx.ID))
for i, input := range tx.Vin {
lines = append(lines, fmt.Sprintf("\tInput %d:", i))
lines = append(lines, fmt.Sprintf("\t\tTXID:\t%x", input.Txid))
lines = append(lines, fmt.Sprintf("\t\tOut:\t%d", input.Vout))
lines = append(lines, fmt.Sprintf("\t\tSignature:\t%x", input.Signature))
lines = append(lines, fmt.Sprintf("\t\tPubKey:\t%x", input.PubKey))
}
for i, output := range tx.Vout {
lines = append(lines, fmt.Sprintf("\tOutput %d:", i))
lines = append(lines, fmt.Sprintf("\t\tValue:\t%d", output.Value))
lines = append(lines, fmt.Sprintf("\t\tScript:\t%x", output.PubKeyHash))
}
return strings.Join(lines, "\n")
}
// TrimmedCopy creates a trimmed copy of Transaction to be used in signing
func (tx *Transaction) TrimmedCopy() Transaction {
var inputs []TXInput
var outputs []TXOutput
for _, vin := range tx.Vin {
inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil})
}
for _, vout := range tx.Vout {
outputs = append(outputs, TXOutput{vout.Value, vout.PubKeyHash})
}
txCopy := Transaction{tx.ID, inputs, outputs}
return txCopy
}
// Verify verifies signatures of Transaction inputes
func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool {
txCopy := tx.TrimmedCopy()
curve := elliptic.P256()
for inID, vin := range tx.Vin {
prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
txCopy.Vin[inID].Signature = nil
txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
txCopy.ID = txCopy.Hash()
txCopy.Vin[inID].PubKey = nil
r := big.Int{}
s := big.Int{}
sigLen := len(vin.Signature)
r.SetBytes(vin.Signature[:(sigLen / 2)])
s.SetBytes(vin.Signature[(sigLen / 2):])
x := big.Int{}
y := big.Int{}
keyLen := len(vin.PubKey)
x.SetBytes(vin.PubKey[:(keyLen / 2)])
y.SetBytes(vin.PubKey[(keyLen / 2):])
rawPubKey := ecdsa.PublicKey{curve, &x, &y}
if ecdsa.Verify(&rawPubKey, txCopy.ID, &r, &s) == false {
return false
}
}
return true
}
// SetID sets the ID of a transaction
func (tx Transaction) SetID() {
var encoded bytes.Buffer
var hash [32]byte
enc := gob.NewEncoder(&encoded)
err := enc.Encode(tx)
if err != nil {
exitWithError(err)
}
hash = sha256.Sum256(encoded.Bytes())
tx.ID = hash[:]
}
// NewCoinbaseTX creates a new coinbase transaction
func NewCoinbaseTX(to, data string) *Transaction {
if data == "" {
data = fmt.Sprintf("Reward to '%s'", to)
}
txin := TXInput{[]byte{}, -1, nil, []byte(data)}
txout := NewTXOutput(subsidy, to)
tx := Transaction{nil, []TXInput{txin}, []TXOutput{*txout}}
tx.ID = tx.Hash()
return &tx
}
// NewUTXOTransaction creates a new transaction
func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction {
var inputs []TXInput
var outputs []TXOutput
wallets, err := NewWallets()
if err != nil {
exitWithError(err)
}
wallet := wallets.GetWallet(from)
pubKeyHash := HashPubKey(wallet.PublicKey)
acc, validOutputs := bc.FindSpendableOutputs(pubKeyHash, amount)
if acc < amount {
exitWithError(errors.New("Not enough funds"))
}
// Build a list of inputs
for txid, outs := range validOutputs {
txID, err := hex.DecodeString(txid)
if err != nil {
exitWithError(err)
}
for _, out := range outs {
input := TXInput{txID, out, nil, wallet.PublicKey}
inputs = append(inputs, input)
}
}
// Build a list of outputs
outputs = append(outputs, *NewTXOutput(amount, to))
if acc > amount {
// There is some change
outputs = append(outputs, *NewTXOutput(acc-amount, from))
}
tx := Transaction{nil, inputs, outputs}
tx.ID = tx.Hash()
bc.SignTransaction(&tx, wallet.PrivateKey)
return &tx
}