package main import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/sha256" "encoding/gob" "encoding/hex" "errors" "fmt" "math/big" "strings" ) const subsidy = 10 // Transaction represents a blockchain transaction type Transaction struct { ID []byte Vin []TXInput Vout []TXOutput } // IsCoinbase checks whether the transaction is a coinbase func (tx Transaction) IsCoinbase() bool { return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1 } // Serialize returns a serialized transaction func (tx *Transaction) Serialize() []byte { var encoded bytes.Buffer enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { exitWithError(err) } return encoded.Bytes() } // Hash returns the hash of the transaction func (tx *Transaction) Hash() []byte { var hash [32]byte txCopy := *tx txCopy.ID = []byte{} hash = sha256.Sum256(txCopy.Serialize()) return hash[:] } // Sign signs each input of a transaction func (tx *Transaction) Sign(privKey ecdsa.PrivateKey, prevTXs map[string]Transaction) { if tx.IsCoinbase() { return } for _, vin := range tx.Vin { if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil { exitWithError(errors.New("Previous transaction is not correct")) } } txCopy := tx.TrimmedCopy() for inID, vin := range txCopy.Vin { prevTx := prevTXs[hex.EncodeToString(vin.Txid)] txCopy.Vin[inID].Signature = nil txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash txCopy.ID = txCopy.Hash() txCopy.Vin[inID].PubKey = nil r, s, err := ecdsa.Sign(rand.Reader, &privKey, txCopy.ID) if err != nil { exitWithError(err) } signature := append(r.Bytes(), s.Bytes()...) tx.Vin[inID].Signature = signature } } // String returns a human-readable representation of a transaction func (tx Transaction) String() string { var lines []string lines = append(lines, fmt.Sprintf("--- Transaction %x:", tx.ID)) for i, input := range tx.Vin { lines = append(lines, fmt.Sprintf("\tInput %d:", i)) lines = append(lines, fmt.Sprintf("\t\tTXID:\t%x", input.Txid)) lines = append(lines, fmt.Sprintf("\t\tOut:\t%d", input.Vout)) lines = append(lines, fmt.Sprintf("\t\tSignature:\t%x", input.Signature)) lines = append(lines, fmt.Sprintf("\t\tPubKey:\t%x", input.PubKey)) } for i, output := range tx.Vout { lines = append(lines, fmt.Sprintf("\tOutput %d:", i)) lines = append(lines, fmt.Sprintf("\t\tValue:\t%d", output.Value)) lines = append(lines, fmt.Sprintf("\t\tScript:\t%x", output.PubKeyHash)) } return strings.Join(lines, "\n") } // TrimmedCopy creates a trimmed copy of Transaction to be used in signing func (tx *Transaction) TrimmedCopy() Transaction { var inputs []TXInput var outputs []TXOutput for _, vin := range tx.Vin { inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil}) } for _, vout := range tx.Vout { outputs = append(outputs, TXOutput{vout.Value, vout.PubKeyHash}) } txCopy := Transaction{tx.ID, inputs, outputs} return txCopy } // Verify verifies signatures of Transaction inputes func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool { txCopy := tx.TrimmedCopy() curve := elliptic.P256() for inID, vin := range tx.Vin { prevTx := prevTXs[hex.EncodeToString(vin.Txid)] txCopy.Vin[inID].Signature = nil txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash txCopy.ID = txCopy.Hash() txCopy.Vin[inID].PubKey = nil r := big.Int{} s := big.Int{} sigLen := len(vin.Signature) r.SetBytes(vin.Signature[:(sigLen / 2)]) s.SetBytes(vin.Signature[(sigLen / 2):]) x := big.Int{} y := big.Int{} keyLen := len(vin.PubKey) x.SetBytes(vin.PubKey[:(keyLen / 2)]) y.SetBytes(vin.PubKey[(keyLen / 2):]) rawPubKey := ecdsa.PublicKey{curve, &x, &y} if ecdsa.Verify(&rawPubKey, txCopy.ID, &r, &s) == false { return false } } return true } // SetID sets the ID of a transaction func (tx Transaction) SetID() { var encoded bytes.Buffer var hash [32]byte enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { exitWithError(err) } hash = sha256.Sum256(encoded.Bytes()) tx.ID = hash[:] } // NewCoinbaseTX creates a new coinbase transaction func NewCoinbaseTX(to, data string) *Transaction { if data == "" { data = fmt.Sprintf("Reward to '%s'", to) } txin := TXInput{[]byte{}, -1, nil, []byte(data)} txout := NewTXOutput(subsidy, to) tx := Transaction{nil, []TXInput{txin}, []TXOutput{*txout}} tx.ID = tx.Hash() return &tx } // NewUTXOTransaction creates a new transaction func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction { var inputs []TXInput var outputs []TXOutput wallets, err := NewWallets() if err != nil { exitWithError(err) } wallet := wallets.GetWallet(from) pubKeyHash := HashPubKey(wallet.PublicKey) acc, validOutputs := bc.FindSpendableOutputs(pubKeyHash, amount) if acc < amount { exitWithError(errors.New("Not enough funds")) } // Build a list of inputs for txid, outs := range validOutputs { txID, err := hex.DecodeString(txid) if err != nil { exitWithError(err) } for _, out := range outs { input := TXInput{txID, out, nil, wallet.PublicKey} inputs = append(inputs, input) } } // Build a list of outputs outputs = append(outputs, *NewTXOutput(amount, to)) if acc > amount { // There is some change outputs = append(outputs, *NewTXOutput(acc-amount, from)) } tx := Transaction{nil, inputs, outputs} tx.ID = tx.Hash() bc.SignTransaction(&tx, wallet.PrivateKey) return &tx }